823 research outputs found

    EChO spectra and stellar activity II. The case of dM stars

    Full text link
    EChO is a dedicated mission to investigate exoplanetary atmospheres. When extracting the planetary signal, one has to take care of the variability of the hosting star, which introduces spectral distortion that can be mistaken as planetary signal. Magnetic variability is a major deal in particular for M stars. To this purpose, assuming a one spot dominant model for the stellar photosphere, we develop a mixed observational-theoretical tool to extract the spot's parameters from the observed optical spectrum. This method relies on a robust library of spectral M templates, which we derive using the observed spectra of quiet M dwarfs in the SDSS database. Our procedure allows to correct the observed spectra for photospheric activity in most of the analyzed cases, reducing the spectral distortion down to the noise levels. Ongoing refinements of the template library and the algorithm will improve the efficiency of our algorithm.Comment: Submitted to Experimental Astronom

    Simbol-X capability of detecting the non-thermal emission of stellar flares

    Get PDF
    We investigate the capability of detecting, with Simbol-X, non-thermal emission during stellar flares, and distinguishing it from hot thermal emission. We find that flare non-thermal emission is detectable when at least ~20 cts are detected with the CZT detector in the 20-80 keV band. Therefore Simbol-X will detect the non-thermal emission from some of the X-ray brightest nearby stars, whether the thermal vs. non-thermal relation, derived for solar flares, holds.Comment: 2 pages, 2 postscript figures, proceedings of the workshop "Simbol-X: the hard X-ray universe in focus", to be published in "Memorie of the Italian Astronomical Society

    A Chandra X-ray study of the young star cluster NGC 6231: low-mass population and initial mass function

    Get PDF
    NGC6231 is a massive young star cluster, near the center of the Sco OB1 association. While its OB members are well studied, its low-mass population has received little attention. We present high-spatial resolution Chandra ACIS-I X-ray data, where we detect 1613 point X-ray sources. Our main aim is to clarify global properties of NGC6231 down to low masses through a detailed membership assessment, and to study the cluster stars' spatial distribution, the origin of their X-ray emission, the cluster age and formation history, and initial mass function. We use X-ray data, complemented by optical/IR data, to establish cluster membership. The spatial distribution of different stellar subgroups also provides highly significant constraints on cluster membership, as does the distribution of X-ray hardness. We perform spectral modeling of group-stacked X-ray source spectra. We find a large cluster population down to ~0.3 Msun (complete to ~1 Msun), with minimal non-member contamination, with a definite age spread (1-8 Myrs) for the low-mass PMS stars. We argue that low-mass cluster stars also constitute the majority of the few hundreds unidentified X-ray sources. We find mass segregation for the most massive stars. The fraction of circumstellar-disk bearing members is found to be ~5%. Photoevaporation of disks under the action of massive stars is suggested by the spatial distribution of the IR-excess stars. We also find strong Halpha emission in 9% of cluster PMS stars. The dependence of X-ray properties on mass, stellar structure, and age agrees with extrapolations based on other young clusters. The cluster initial mass function, computed over ~2 dex in mass, has a slope Gamma~-1.14. The total mass of cluster members above 1 Msun is 2280 Msun, and the inferred total mass is 4380 Msun. We also study the peculiar, hard X-ray spectrum of the Wolf-Rayet star WR79.Comment: 25 pages, 36 figures, accepted for publication on Astronomy and Astrophysic

    Effects of XUV radiation on circumbinary planets

    Full text link
    Several circumbinary planets have recently been discovered. The orbit of a planet around a binary stellar system poses several dynamic constraints. The effects that radiation from the host stars may have on the planet atmospheres must be considered. Because of the configuration of a close binary system, these stars have a high rotation rate, which causes a permanent state of high stellar activity and copious XUV radiation. The accumulated effects are stronger than for exoplanets around single stars, and cause a faster evaporation of their atmospheres. We evaluate the effects that stellar radiation has on the evaporation of exoplanets around binary systems and on the survival of these planets. We considered the XUV spectral range to account for the photons that are easily absorbed by a planet atmosphere that is mainly composed of hydrogen. A more complex atmospheric composition is expected to absorb this radiation more efficiently. We used direct X-ray observations to evaluate the energy in the X-rays range and coronal models to calculate the (nondetectable) EUV part of the spectrum. The simulations show that exoplanets in a close orbit will suffer strong photoevaporation that may cause a total loss of atmosphere in a short time. A binary system of two solar-like stars will be highly efficient in evaporating the atmosphere of the planet. These systems will be difficult to find, even if they are dynamically stable. Still, planets may orbit around binary systems of low mass stars for wider orbits. Currently known circumbinary planets are not substantially affected by thermal photoevaporation processes, unless Kepler-47 b has an inflated atmosphere. The distribution of the orbital periods of circumbinary planets is shifted to much longer periods than the average of Kepler planets, which supports a scenario of strong photoevaporation in close-in circumbinary planets.Comment: Accepted by A&A. 8 pages, 5 figure

    The photospheric abundances of active binaries I Detailed analysis of HD 113816 (IS Vir) and HD 119285 (V851 Cen)

    Get PDF
    The high-resolution optical spectra of the two X-ray active binaries RS CVn stars HD 113816 (IS Vir) and HD 119285 (V851 Cen) are analysed and their Na, Mg, Al, Si, Ca, Sc, Ti, Co and Ni contents determined. The analysis of IS Vir and V851 Cen is performed with three different LTE methods. In the first one, abundances are derived using measured equivalent widths and Kurucz LTE model atmospheres as input for the MOOG software package. The input atmospheric parameters and abundances are iteratively modified until (i) the Fe I abundances exhibit no trend with excitation potential or equivalent width, (ii) Fe I and Fe II average abundances are the same and (iii) Fe and Alpha elements average abundances are consistent with the input values. The second method follows a similar approach, but relies on the B-V and V-I colour indices to determine the temperature. The third method relies on fitting the 6162 A Ca I line wing profiles to derive the surface gravity. The reliability of these methods is investigated in the context of single line RS CVn stars. It is shown that the V-I photometric index gives, on a broader sample of stars, significantly cooler estimates of the effective temperature than the B-V index. All other approaches give results in good agreement with each other. The analysis of IS Vir and V851 Cen results in both cases in their primaries being giant stars of near-solar metallicity. Their parameters as derived with the first method are respectively Teff = 4720 K, log g = 2.65, [Fe/H] = +0.04 and Teff = 4700 K, log g = 3.0 and [Fe/H] = -0.13. In the case of V851 Cen the derived iron content is significantly higher than a previous determination in the literature. Both stars exhibit relative overabundances of several elements (e.g. Ca) with respect to the solar mix.Comment: 12 Pages, 2 Figures, Accepted for publication in A&

    The correlation between soft and hard X-rays component in flares: from the Sun to the stars

    Full text link
    In this work we study the correlation between the soft (1.6--12.4 keV, mostly thermal) and the hard (20--40 and 60--80 keV, mostly non-thermal) X-ray emission in solar flares up to the most energetic events, spanning about 4 orders of magnitude in peak flux, establishing a general scaling law and extending it to the most intense stellar flaring events observed to date. We used the data from the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) spacecraft, a NASA Small Explorer launched in February 2002. RHESSI has good spectral resolution (~1 keV in the X-ray range) and broad energy coverage (3 keV--20 MeV), which makes it well suited to distinguish the thermal from non-thermal emission in solar flares. Our study is based on the detailed analysis of 45 flares ranging from the GOES C-class, to the strongest X-class events, using the peak photon fluxes in the GOES 1.6--12.4 keV and in two bands selected from RHESSI data, i.e.20--40 keV and 60--80 keV. We find a significant correlation between the soft and hard peak X-ray fluxes spanning the complete sample studied. The resulting scaling law has been extrapolated to the case of the most intense stellar flares observed, comparing it with the stellar observations. Our results show that an extrapolation of the scaling law derived for solar flares to the most active stellar events is compatible with the available observations of intense stellar flares in hard X-rays.Comment: 9 pages, 10 figures. To be published in Astronomy and Astrophysic
    • …
    corecore