12 research outputs found

    Spent Yeast from Brewing Processes: A Biodiverse Starting Material for Yeast Extract Production

    Get PDF
    Spent yeast from beer manufacturing is a cost-effective and nutrient-rich starting material for the production of yeast extracts. In this study, it is shown how physiologically important ingredients in a yeast extract are influenced by the composition of the spent yeast from the brewing process. In pilot fermentations, the time of cropping (primary fermentation, lagering) of the spent yeast and the original gravity (12 ˚P, 16 ˚P, 20 ˚P) of the fermentation medium was varied, and four alternative non-Saccharomyces yeast strains were compared with two commercial Saccharomyces yeast strains. In addition, spent yeast was contaminated with the beer spoiler Lactobacillus brevis. The general nutrient composition (total protein, fat, ash) was investigated as well as the proteinogenic amino acid spectrum, the various folate vitamers (5-CH3-H4folate, 5-CHO-H4folate, 10-CHO-PteGlu, H4folate, PteGlu) and the biological activity (reduction, antioxidative potential) of a mechanically (ultrasonic sonotrode) and an autolytically produced yeast extract. All the investigated ingredients from the yeast extract were influenced by the composition of the spent yeast from the brewing process. The biodiversity of the spent yeast from the brewing process therefore directly affects the content of physiologically valuable ingredients of a yeast extract and should be taken into consideration in industrial manufacturing processes

    Comparison of Raman and Mid-Infrared Spectroscopy for Real-Time Monitoring of Yeast Fermentations: A Proof-of-Concept for Multi-Channel Photometric Sensors

    Get PDF
    Raman and mid-infrared (MIR) spectroscopy are useful tools for the specific detection of molecules, since both methods are based on the excitation of fundamental vibration modes. In this study, Raman and MIR spectroscopy were applied simultaneously during aerobic yeast fermentations of Saccharomyces cerevisiae. Based on the recorded Raman intensities and MIR absorption spectra, respectively, temporal concentration courses of glucose, ethanol, and biomass were determined. The chemometric methods used to evaluate the analyte concentrations were partial least squares (PLS) regression and multiple linear regression (MLR). In view of potential photometric sensors, MLR models based on two (2D) and four (4D) analyte-specific optical channels were developed. All chemometric models were tested to predict glucose concentrations between 0 and 30 g L−1, ethanol concentrations between 0 and 10 g L−1, and biomass concentrations up to 15 g L−1 in real time during diauxic growth. Root-mean-squared errors of prediction (RMSEP) of 0.68 g L−1, 0.48 g L−1, and 0.37 g L−1 for glucose, ethanol, and biomass were achieved using the MIR setup combined with a PLS model. In the case of Raman spectroscopy, the corresponding RMSEP values were 0.92 g L−1, 0.39 g L−1, and 0.29 g L−1. Nevertheless, the simple 4D MLR models could reach the performance of the more complex PLS evaluation. Consequently, the replacement of spectrometer setups by four-channel sensors were discussed. Moreover, the advantages and disadvantages of Raman and MIR setups are demonstrated with regard to process implementation

    Complexation of transition metals by chelators added during mashing and impact on beer stability

    Get PDF
    Beer inevitably changes due to an array of staling reactions. A major factor in beer ageing is the involvement of transition metals (iron, copper, manganese) in oxidative reactions. To tackle the flavour stability issue, metal chelation was investigated. Based on previous research, five primary chelators (tannic acid, gallic acid, EDTA, citric acid and phytic acid) were screened using experimental design for their capacity to reduce the content of wort transition metals. The chelating agents were added under varying conditions (mash out temperature, mash pH, grain bill, chelator concentration, addition time) during laboratory scale mashing to assess how they altered complexation and metal load. Fourteen alternative chelators (ferulic acid, tartaric acid, quercetin, chlorogenic acid and ten polyphenolic food extracts: green tea, pomegranate, grape seed, reishi, cinnamon, curcuma, milk thistle, ginkgo, grapefruit seed and raspberry) were also explored. Metal ions were analysed using inductively coupled plasma optical emission spectrometry and wort oxidative stability by electron spin resonance spectroscopy. Mash pH was the most decisive of all tested process variables: acidified mashing (pH 6 to 5) produced worts with more iron, manganese and zinc (230, 320 and 150%, respectively). Addition of effective chelators counteracted this undesirable effect for iron. Green tea extract, tannic acid and, particularly, pomegranate extract all resulted in lower wort iron. Conversely, addition of EDTA, caused iron, manganese and zinc to increase. Pomegranate extract (90% ellagic acid) was the best performing chelator and reduced radical generation in wort (80% reduction by 60 mg/L addition), making it a promising novel compound in the improvement of beer shelf life. © 2021 The Authors. Journal of the Institute of Brewing published by John Wiley & Sons Ltd on behalf of The Institute of Brewing & Distilling.EC/H2020/722166/EU/Food science, technology and engineering - European Joint Doctorate training towards knowledge, skills and mobility/EJDFoodSc

    Comparison of Two Different Designs of a Scraped Surface Crystallizer for Desalination Effect and Hydraulic and Thermodynamic Numbers

    Get PDF
    The design of a desalination plant is most important if the desired product purity has to be as high as possible. This is also true for freeze crystallization plants. A correct solid-to-liquid ratio has to be ensured when pressing is used as a post-treatment. Thus, the dependence of the overall plant design on the achieved ice quality but also on different hydraulic and thermodynamic numbers is important. In this research, a scraped screw crystallizer plant is presented and examined for two different screw designs. Experiments with a low initial concentration, as for the usage to desalinate groundwater to gain it as process water, were conducted. Furthermore, solutions with high initial concentrations simulating seawater to produce potable water were used as another set of test solutions. The findings showed that neither of the screw designs is more favorable than the other, but it is important to have a plant design fitting the existing parameters on site

    Feasibility Study for a Chemical Process Particle Size Characterization System for Explosive Environments Using Low Laser Power

    Get PDF
    The industrial particle sensor market lacks simple, easy to use, low cost yet robust, safe and fast response solutions. Towards development of such a sensor, for in-line use in micro channels under continuous flow conditions, this work introduces static light scattering (SLS) determination of particle diameter using a laser with an emission power of less than 5 ”W together with sensitive detectors with detection times of 1 ms. The measurements for the feasibility studies are made in an angular range between 20° and 160° in 2° increments. We focus on the range between 300 and 1000 nm, for applications in the production of paints, colors, pigments and crystallites. Due to the fast response time, reaction characteristics in microchannel designs for precipitation and crystallization processes can be studied. A novel method for particle diameter characterization is developed using the positions of maxima and minima and slope distribution. The novel algorithm to classify particle diameter is especially developed to be independent of dispersed phase concentration or concentration fluctuations like product flares or signal instability. Measurement signals are post processed and particle diameters are validated against Mie light scattering simulations. The design of a low cost instrument for industrial use is proposed

    A customized multispectral needle probe combined with a virtual photometric setup for in vivo detection of Lewis lung carcinoma in an animal model

    Get PDF
    Optical systems applied for tissue analysis are primarily based on single spectroscopic techniques. This paper however presents a multispectral backscattering sensor designed for in vivo application by a specially formed probe tip which allows side by side monitoring of ultraviolet, visible, near-infrared and fluorescence spectra. The practical applicability of the measurement system was demonstrated in vitro (muscle and adipose tissue) and in vivo in an animal model (mouse). By comparing associated measuring changes in biochemical, physical-morphological and colorimetric values this procedure allows a differentiation between healthy, marginal and malignant tissue

    Characterization of volatile metabolites formed by molds on barley by mass and ion mobility spectrometry

    Get PDF
    The contamination of barley by molds on the field or in storage leads to the spoilage of grain and the production of mycotoxins, which causes major economic losses in malting facilities and breweries. Therefore, on‐site detection of hidden fungus contaminations in grain storages based on the detection of volatile marker compounds is of high interest. In this work, the volatile metabolites of 10 different fungus species are identified by gas chromatography (GC) combined with two complementary mass spectrometric methods, namely, electron impact (EI) and chemical ionization at atmospheric pressure (APCI)‐mass spectrometry (MS). The APCI source utilizes soft X‐radiation, which enables the selective protonation of the volatile metabolites largely without side reactions. Nearly 80 volatile or semivolatile compounds from different substance classes, namely, alcohols, aldehydes, ketones, carboxylic acids, esters, substituted aromatic compounds, alkenes, terpenes, oxidized terpenes, sesquiterpenes, and oxidized sesquiterpenes, could be identified. The profiles of volatile and semivolatile metabolites of the different fungus species are characteristic of them and allow their safe differentiation. The application of the same GC parameters and APCI source allows a simple method transfer from MS to ion mobility spectrometry (IMS), which permits on‐site analyses of grain stores. Characterization of IMS yields limits of detection very similar to those of APCI‐MS. Accordingly, more than 90% of the volatile metabolites found by APCI‐MS were also detected in IMS. In addition to different fungus genera, different species of one fungus genus could also be differentiated by GC‐IMS.BMEL, 2814801811, Verbundprojekt: Rohstoffscreening mit spektral-optischen Verfahren bei der Getreidelagerung (OptiScreen) - Teilprojekt

    The Importance of a Comparative Characterization of Saccharomyces Cerevisiae and Saccharomyces Pastorianus Strains for Brewing

    Get PDF
    The volume and market share loss for classical beer types such as pils beer and wheat beer has been declining for several years, but the overall beer market remains almost unchanged as a result of the increasing interest in beer specialties Due to high biodiversity, the diversity of the strains, and the different flavor profiles, reliable and practical information regarding the characteristics of individual brewing strains is required to help brewers to find the right strain for their brewing purposes. This paper presents a comparison of 10 commercially available Technical University of Munich (TUM) brewing yeast strains. The strains were screened for genetic and phenotypic characteristics. After confirming the genetic distinctiveness by using species-specific real-time polymerase chain reaction (RT-PCR) systems and a strain typing method based on PCR-capillary electrophoresis of the partial intergenic spacer 2 (IGS2) fragment (IGS2-314 PCR-capillary electrophoresis), the strains were tested regarding phenotypic characteristics under controlled and identical fermentation conditions in small-scale brewing trials. Besides the fermentation performance, flocculation behavior, sugar metabolism and other phenotypic characteristics, the main focus was on the flavor and aroma profile of each investigated TUM yeast strain

    Comparison of Raman and Mid-Infrared Spectroscopy for Real-Time Monitoring of Yeast Fermentations: A Proof-of-Concept for Multi-Channel Photometric Sensors

    No full text
    Raman and mid-infrared (MIR) spectroscopy are useful tools for the specific detection of molecules, since both methods are based on the excitation of fundamental vibration modes. In this study, Raman and MIR spectroscopy were applied simultaneously during aerobic yeast fermentations of Saccharomyces cerevisiae. Based on the recorded Raman intensities and MIR absorption spectra, respectively, temporal concentration courses of glucose, ethanol, and biomass were determined. The chemometric methods used to evaluate the analyte concentrations were partial least squares (PLS) regression and multiple linear regression (MLR). In view of potential photometric sensors, MLR models based on two (2D) and four (4D) analyte-specific optical channels were developed. All chemometric models were tested to predict glucose concentrations between 0 and 30 g L−1, ethanol concentrations between 0 and 10 g L−1, and biomass concentrations up to 15 g L−1 in real time during diauxic growth. Root-mean-squared errors of prediction (RMSEP) of 0.68 g L−1, 0.48 g L−1, and 0.37 g L−1 for glucose, ethanol, and biomass were achieved using the MIR setup combined with a PLS model. In the case of Raman spectroscopy, the corresponding RMSEP values were 0.92 g L−1, 0.39 g L−1, and 0.29 g L−1. Nevertheless, the simple 4D MLR models could reach the performance of the more complex PLS evaluation. Consequently, the replacement of spectrometer setups by four-channel sensors were discussed. Moreover, the advantages and disadvantages of Raman and MIR setups are demonstrated with regard to process implementation

    Review: Pure non‐Saccharomyces starter cultures for beer fermentation with a focus on secondary metabolites and practical applications

    No full text
    Recently there has been increased interest in using non‐Saccharomyces yeasts to ferment beer. The worldwide growth of craft beer and microbreweries has revitalised the use of different yeast strains with a pronounced impact on aroma and flavour. Using non‐conventional yeast gives brewers a unique selling point to differentiate themselves. Belgian brewers have been very successful in using wild yeasts and mixed fermentations that often contain non‐Saccharomyces yeasts. Historically, ancient beers and beers produced before the domestication of commonly used Saccharomyces strains most likely included non‐Saccharomyces species. Given the renewed interest in using non‐Saccharomyces yeasts to brew traditional beers and their potential application to produce low‐alcohol or alcohol‐free beer, the fermentation and flavour characteristics of different species of non‐Saccharomyces pure culture yeast were screened for brewing potential (Brettanomyces anomalus and bruxellensis, Candida tropicalis and shehatae, Saccharomycodes ludwigii, Torulaspora delbrueckii, Pichia kluyveri, Zygosaccharomyces rouxii). Alcohol‐free beer is already industrially produced using S. ludwigii, a maltose‐negative species, which is a good example of the introduction of non‐Saccharomyces yeast to breweries. Overall, non‐Saccharomyces yeasts represent a large resource of biodiversity for the production of new beers and have the potential for wider application to other beverage and industrial applications. Almost all of the trials reviewed were conducted with varying fermentation parameters, which plays an important role in the outcome of the studies. To understand these impacts all trials were described with their major fermentation parameters
    corecore