105 research outputs found

    Latent Structure Preserving Hashing

    Get PDF
    Aiming at efficient similarity search, hash functions are designed to embed high-dimensional feature descriptors to low-dimensional binary codes such that similar descriptors will lead to binary codes with a short distance in the Hamming space. It is critical to effectively maintain the intrinsic structure and preserve the original information of data in a hashing algorithm. In this paper, we propose a novel hashing algorithm called Latent Structure Preserving Hashing (LSPH), with the target of finding a well-structured low-dimensional data representation from the original high-dimensional data through a novel objective function based on Nonnegative Matrix Factorization (NMF) with their corresponding Kullback-Leibler divergence of data distribution as the regularization term. Via exploiting the joint probabilistic distribution of data, LSPH can automatically learn the latent information and successfully preserve the structure of high-dimensional data. To further achieve robust performance with complex and nonlinear data, in this paper, we also contribute a more generalized multi-layer LSPH (ML-LSPH) framework, in which hierarchical representations can be effectively learned by a multiplicative up-propagation algorithm. Once obtaining the latent representations, the hash functions can be easily acquired through multi-variable logistic regression. Experimental results on three large-scale retrieval datasets, i.e., SIFT 1M, GIST 1M and 500 K TinyImage, show that ML-LSPH can achieve better performance than the single-layer LSPH and both of them outperform existing hashing techniques on large-scale data

    Structure-Preserving Binary Representations for RGB-D Action Recognition

    Get PDF
    In this paper, we propose a novel binary local representation for RGB-D video data fusion with a structure-preserving projection. Our contribution consists of two aspects. To acquire a general feature for the video data, we convert the problem to describing the gradient fields of RGB and depth information of video sequences. With the local fluxes of the gradient fields, which include the orientation and the magnitude of the neighborhood of each point, a new kind of continuous local descriptor called Local Flux Feature(LFF) is obtained. Then the LFFs from RGB and depth channels are fused into a Hamming spacevia the Structure Preserving Projection (SPP). Specifically, an orthogonal projection matrix is applied to preserve the pairwise structure with a shape constraint to avoid the collapse of data structure in the projected space. Furthermore, a bipartite graph structure of data is taken into consideration, which is regarded as a higher level connection between samples and classes than the pairwise structure of local features. The extensive experiments show not only the high efficiency of binary codes and the effectiveness of combining LFFs from RGB-D channels via SPP on various action recognition benchmarks of RGB-D data, but also the potential power of LFF for general action recognition

    Unsupervised Local Feature Hashing for Image Similarity Search

    Get PDF
    The potential value of hashing techniques has led to it becoming one of the most active research areas in computer vision and multimedia. However, most existing hashing methods for image search and retrieval are based on global feature representations, which are susceptible to image variations such as viewpoint changes and background cluttering. Traditional global representations gather local features directly to output a single vector without the analysis of the intrinsic geometric property of local features. In this paper, we propose a novel unsupervised hashing method called unsupervised bilinear local hashing (UBLH) for projecting local feature descriptors from a high-dimensional feature space to a lower-dimensional Hamming space via compact bilinear projections rather than a single large projection matrix. UBLH takes the matrix expression of local features as input and preserves the feature-to-feature and image-to-image structures of local features simultaneously. Experimental results on challenging data sets including Caltech-256, SUN397, and Flickr 1M demonstrate the superiority of UBLH compared with state-of-the-art hashing methods

    Projection Bank: From High-Dimensional Data to Medium-Length Binary Codes

    Get PDF
    Recently, very high-dimensional feature representations, e.g., Fisher Vector, have achieved excellent performance for visual recognition and retrieval. However, these lengthy representations always cause extremely heavy computational and storage costs and even become unfeasible in some large-scale applications. A few existing techniques can transfer very high-dimensional data into binary codes, but they still require the reduced code length to be relatively long to maintain acceptable accuracies. To target a better balance between computational efficiency and accuracies, in this paper, we propose a novel embedding method called Binary Projection Bank (BPB), which can effectively reduce the very high-dimensional representations to medium-dimensional binary codes without sacrificing accuracies. Instead of using conventional single linear or bilinear projections, the proposed method learns a bank of small projections via the max-margin constraint to optimally preserve the intrinsic data similarity. We have systematically evaluated the proposed method on three datasets: Flickr 1M, ILSVR2010 and UCF101, showing competitive retrieval and recognition accuracies compared with state-of-the-art approaches, but with a significantly smaller memory footprint and lower coding complexity

    Local Feature Discriminant Projection

    Get PDF
    In this paper, we propose a novel subspace learning algorithm called Local Feature Discriminant Projection (LFDP) for supervised dimensionality reduction of local features. LFDP is able to efficiently seek a subspace to improve the discriminability of local features for classification. We make three novel contributions. First, the proposed LFDP is a general supervised subspace learning algorithm which provides an efficient way for dimensionality reduction of large-scale local feature descriptors. Second, we introduce the Differential Scatter Discriminant Criterion (DSDC) to the subspace learning of local feature descriptors which avoids the matrix singularity problem. Third, we propose a generalized orthogonalization method to impose on projections, leading to a more compact and less redundant subspace. Extensive experimental validation on three benchmark datasets including UIUC-Sports, Scene-15 and MIT Indoor demonstrates that the proposed LFDP outperforms other dimensionality reduction methods and achieves state-of-the-art performance for image classification

    Feature Reduction and Representation Learning for Visual Applications

    Get PDF
    Computation on large-scale data spaces has been involved in many active problems in computer vision and pattern recognition. However, in realistic applications, most existing algorithms are heavily restricted by the large number of features, and tend to be inefficient and even infeasible. In this thesis, the solution to this problem is addressed in the following ways: (1) projecting features onto a lower-dimensional subspace; (2) embedding features into a Hamming space. Firstly, a novel subspace learning algorithm called Local Feature Discriminant Projection (LFDP) is proposed for discriminant analysis of local features. LFDP is able to efficiently seek a subspace to improve the discriminability of local features for classification. Extensive experimental validation on three benchmark datasets demonstrates that the proposed LFDP outperforms other dimensionality reduction methods and achieves state-of-the-art performance for image classification. Secondly, for action recognition, a novel binary local representation for RGB-D video data fusion is presented. In this approach, a general local descriptor called Local Flux Feature (LFF) is obtained for both RGB and depth data by computing the local fluxes of the gradient fields of video data. Then the LFFs from RGB and depth channels are fused into a Hamming space via the Structure Preserving Projection (SPP), which preserves not only the pairwise feature structure, but also a higher level connection between samples and classes. Comprehensive experimental results show the superiority of both LFF and SPP. Thirdly, in respect of unsupervised learning, SPP is extended to the Binary Set Embedding (BSE) for cross-modal retrieval. BSE outputs meaningful hash codes for local features from the image domain and word vectors from text domain. Extensive evaluation on two widely-used image-text datasets demonstrates the superior performance of BSE compared with state-of-the-art cross-modal hashing methods. Finally, a generalized multiview spectral embedding algorithm called Kernelized Multiview Projection (KMP) is proposed to fuse the multimedia data from multiple sources. Different features/views in the reproducing kernel Hilbert spaces are linearly fused together and then projected onto a low-dimensional subspace by KMP, whose performance is thoroughly evaluated on both image and video datasets compared with other multiview embedding methods
    • …
    corecore