348 research outputs found

    Synaptic Transformations Underlying Highly Selective Auditory Representations of Learned Birdsong

    Get PDF
    Stimulus-specific neuronal responses are a striking characteristic of several sensory systems, although the synaptic mechanisms underlying their generation are not well understood. The songbird nucleus HVC (used here as a proper name) contains projection neurons (PNs) that fire temporally sparse bursts of action potentials to playback of the bird\u27s own song (BOS) but are essentially silent when presented with other acoustical stimuli. To understand how such remarkable stimulus specificity emerges, it is necessary to compare the auditory-evoked responsiveness of the afferents of HVC with synaptic responses in identified HVC neurons. We found that inactivating the interfacial nucleus of the nidopallium (NIf) could eliminate all auditory-evoked subthreshold activity in both HVC PN types, consistent with NIf serving as the major auditory afferent of HVC. Simultaneous multiunit extracellular recordings in NIf and intracellular recordings in HVC revealed that NIf population activity and HVC subthreshold responses were similar in their selectivity for BOS and that NIf spikes preceded depolarizations in all HVC cell types. These results indicate that information about the BOS as well as other auditory stimuli is transmitted synaptically from NIf to HVC. Unlike HVC PNs, however, HVC-projecting NIf neurons fire throughout playback of BOS as well as non-BOS stimuli. Therefore, temporally sparse BOS-evoked firing and enhanced BOS selectivity, manifested as an absence of suprathreshold responsiveness to non-BOS stimuli, emerge in HVC. The transformation to a sparse auditory representation parallels differences in NIf and HVC activity patterns seen during singing, which may point to a common mechanism for encoding sensory and motor representations of song

    Functional Consequences of Compartmentalization of Synaptic Input

    Get PDF
    Intra-axonal recordings of stomatogastric nerve axon 1 (SNAX1) indicate that there are synaptic inputs onto the SNAX1 terminals in the stomatogastric ganglion (STG) of the crab Cancer borealis (Nusbaum et al., 1992b). To determine whether this synaptic input only influenced SNAX1 activity within the STG, we identified the SNAX1 soma in the commissural ganglion (CoG). We found that this neuron has a neuropilar arborization in the CoG and also receives synaptic inputs in this ganglion. Based on its soma location, we have renamed this neuron modulatory commissural neuron 1 (MCN1). While intracellular stimulation of MCN1soma and MCN1SNAX has the same excitatory effects on the STG motor patterns, MCN1 receives distinct synaptic inputs in the STG and CoG. Moreover, the synaptic input that MCN1 receives within the STG compartmentalizes its activity. Specifically, the lateral gastric (LG) neuron synaptically inhibits MCN1SNAX-initiated activity within the STG (Nusbaum et al., 1992b), and while LG did not inhibit MCN1soma- initiated activity in the CoG, it did inhibit these MCN1 impulses when they arrived in the STG. As a result, during MCN1soma-elicited gastric mill rhythms, MCN1soma is continually active in the CoG but its effects are rhythmically inhibited in the STG by LG neuron impulse bursts. One functional consequence of this local control of MCN1 within the STG is that the LG neuron thereby controls the timing of the impulse bursts in other gastric mill neurons. Thus, local synaptic input can functionally compartmentalize the activity of a neuron with arbors in distinct regions of the nervous system

    Supplementary Figure 1

    Get PDF
    Supplemental data for Thalamic Gating of Auditory Responses in Telencephalic Song Control Nuclei

    Thalamic Gating of Auditory Responses in Telencephalic Song Control Nuclei

    Get PDF
    In songbirds, nucleus Uvaeformis (Uva) is the sole thalamic input to the telencephalic nucleus HVC (used as a proper name), a sensorimotor structure essential to learned song production that also exhibits state dependent responses to auditory presentation of the bird’s own song (BOS). The role of Uva in influencing HVC auditory activity is unknown. Using in vivo extracellular and intracellular recordings in urethane-anesthetized zebra finches, we characterized the auditory properties of Uva and examined its influence on auditory activity in HVC and in the telencephalic nucleus interface (NIf), the main auditory afferent of HVC and a corecipient of Uva input. We found robust auditory activity in Uva and determined that Uva is innervated by the ventral nucleus of lateral lemniscus, an auditory brainstem component. Thus, Uva provides a direct linkage between the auditory brainstem and HVC. Although low-frequency electrical stimulation in Uva elicited short-latency depolarizing postsynaptic potentials in HVC neurons, reversibly silencing Uva exerted little effect on BOS-evoked activity in HVC neurons. However, high-frequency stimulation in Uva suppressed auditory-evoked synaptic and suprathreshold activity in all HVC neuron types, a process accompanied by decreased input resistance of individual HVC neurons. Furthermore, high-frequency stimulation in Uva simultaneously suppressed auditory activity in HVC and NIf. These results suggest that Uva can gate auditory responses in HVC through a mechanism that involves inhibition local to HVC as well as withdrawal of auditory-evoked excitatory drive from NIf. Thus, Uva could play an important role in state-dependent gating of auditory activity in telencephalic sensorimotor structures important to learned vocal control

    Neuropeptide Degradation Produces Functional Inactivation in the Crustacean Nervous System

    Get PDF
    The pentapeptide proctolin (Proct.; Arg-Tyr-Leu-Pro-Thr) is a modulatory transmitter found throughout the crustacean nervous system. No information is available in this system, however, as to how the actions of this peptide are terminated. To study this issue in the crab Cancer borealis, we incubated exogenous proctolin (10(-5) M) with either the thoracic ganglion (TG) or with conditioned saline (CS) that had been preincubated with the TG. We removed aliquots at standard time points for analysis by reverse-phase high-performance liquid chromatography (HPLC). We found that over time the proctolin peak became progressively smaller, while three novel peaks appeared and increased in size. Comigration experiments using HPLC indicated that the major novel peak was Proct. (Tyr-Leu-Pro-Thr), while one of the two minor peaks was Proct. (Leu-Pro-Thr). The other minor peak appeared to be Proct. (Arg-Tyr), based on similar HPLC retention time to synthetic Proct. The reduction in the proctolin peak and the increase in the Proct. peak was prevented by co-incubation of proctolin with any one of several aminopeptidase inhibitors (10(-4) M). Proct. and Proct. appeared to result from a diaminopeptidase-mediated cleavage of proctolin. We tested whether N-terminal cleavage functionally inactivated proctolin by coapplying proctolin (10(-8) M) and individual aminopeptidase inhibitors (10(-5) M) to the isolated stomatogastric ganglion (STG). We found that these inhibitors significantly enhanced the proctolin excitation of the pyloric rhythm. Furthermore, application of synthetic Proct. to the STG had no effect unless high concentrations (\u3e 10(-6) M) were used, and neither Proct. nor Proct. (10(-4) M) influenced the pyloric rhythm. Our results indicate that proctolin is enzymatically degraded and thereby biologically inactivated in the crab nervous system, primarily by extracellularly located aminopeptidase activity

    Different Proctolin Neurons Elicit Distinct Motor Patterns From a Multifunctional Neuronal Network

    Get PDF
    Distinct motor patterns are selected from a multifunctional neuronal network by activation of different modulatory projection neurons. Subsets of these projection neurons can contain the same neuromodulator(s), yet little is known about the relative influence of such neurons on network activity. We have addressed this issue in the stomatogastric nervous system of the crab Cancer borealis. Within this system, there is a neuronal network in the stomatogastric ganglion (STG) that produces many versions of the pyloric and gastric mill rhythms. These different rhythms result from activation of different projection neurons that innervate the STG from neighboring ganglia and modulate STG network activity. Three pairs of these projection neurons contain the neuropeptide proctolin. These include the previously identified modulatory proctolin neuron and modulatory commissural neuron 1 (MCN1) and the newly identified modulatory commissural neuron 7 (MCN7). We document here that each of these neurons contains a unique complement of cotransmitters and that each of these neurons elicits a distinct version of the pyloric motor pattern. Moreover, only one of them (MCN1) also elicits a gastric mill rhythm. The MCN7-elicited pyloric rhythm includes a pivotal switch by one STG network neuron from playing a minor to a major role in motor pattern generation. Therefore, modulatory neurons that share a peptide transmitter can elicit distinct motor patterns from a common target network

    A Synaptic Basis for Auditory-Vocal Integration in the Songbird

    Get PDF
    Songbirds learn to sing by memorizing a tutor song that they then vocally mimic using auditory feedback. This developmental sequence suggests that brain areas that encode auditory memories communicate with brain areas for learned vocal control. In the songbird, the secondary auditory telencephalic region caudal mesopallium (CM) contains neurons that encode aspects of auditory experience. We investigated whether CM is an important source of auditory input to two sensorimotor structures implicated in singing, the telencephalic song nucleus interface (NIf) and HVC. We used reversible inactivation methods to show that activity in CM is necessary for much of the auditory-evoked activity that can be detected in NIf and HVC of anesthetized adult male zebra finches. Furthermore, extracellular and intracellular recordings along with spike-triggered averaging methods indicate that auditory selectivity for the bird’s own song is enhanced between CM and NIf. We used lentiviral-mediated tracing methods to confirm that CM neurons directly innervate NIf. To our surprise, these tracing studies also revealed a direct projection from CM to HVC. We combined irreversible lesions of NIf with reversible inactivation of CM to establish that CM supplies a direct source of auditory drive to HVC. Finally, using chronic recording methods, we found that CM neurons are active in response to song playback and during singing, indicating their potential importance to song perception and processing of auditory feedback. These results establish the functional synaptic linkage between sites of auditory and vocal learning and may identify an important substrate for learned vocal communication

    Content Uniformity of Over-the-Counter Melatonin

    Get PDF
    Dietary supplements are loosely regulated in comparison to over-the-counter and prescription drugs. Numerous tests for safety and efficacy are required before drugs can be marketed. However, the Food and Drug Administration does not require thorough examination of supplements before they are sold. Dietary supplements generally adhere to the phrase, “safe, until proven unsafe,” with safety determined solely through post-market adverse event reports. Substandard regulation of supplement manufacturing leads to warranted doubt about the safety and efficacy of dietary supplements. Within the dietary supplement market there are regulatory bodies, such as the United States Pharmacopeia (USP), that provide optional verification services to manufacturers. If utilized, these regulatory bodies ensure that manufacturers meet specific standards in regard to Current Good Manufacturing Practices (cGMP), purity of ingredients, and overall integrity of their product. Numerous studies have revealed a history of inaccuracies in supplement product labeling. Researchers conducting these studies consistently conclude that there is a need for stricter regulation and finer application of cGMP within supplement manufacturing companies. One of the most popular dietary supplements on the market, melatonin, has been the focus in a number of studies evaluating supplement product content integrity. Melatonin is commonly used to treat insomnia and to cure symptoms of jet lag. According to past research, these melatonin products often contain an amount of active ingredient that significantly differs from respective product labeling. Most research regarding melatonin product integrity has occurred outside of the past ten years, leaving the need for newer research. Melatonin 3 mg will be purchased from six different manufacturers with three manufacturers possessing USP verification. Within each manufacturer, melatonin 3 mg from five separate lot numbers will be purchased. Ten tablets from each bottle (totaling 300 tablets) will be analyzed using a high-pressure liquid chromatography machine in order to determine actual melatonin content in each tablet. Data will be recorded and compared to determine accuracy of product labeling and batch-to-batch content uniformity. Data from USP-verified melatonin will be compared with non-verified products in order to determine if regulatory body verification is effective at improving content uniformity

    The subendothelial extracellular matrix modulates NF-κB activation by flow: a potential role in atherosclerosis

    Get PDF
    Atherosclerotic plaque forms in regions of the vasculature exposed to disturbed flow. NF-κB activation by fluid flow, leading to expression of target genes such as E-selectin, ICAM-1, and VCAM-1, may regulate early monocyte recruitment and fatty streak formation. Flow-induced NF-κB activation is downstream of conformational activation of integrins, resulting in new integrin binding to the subendothelial extracellular matrix and signaling. Therefore, we examined the involvement of the extracellular matrix in this process. Whereas endothelial cells plated on fibronectin or fibrinogen activate NF-κB in response to flow, cells on collagen or laminin do not. In vivo, fibronectin and fibrinogen are deposited at atherosclerosis-prone sites before other signs of atherosclerosis. Ligation of integrin α2β1 on collagen prevents flow-induced NF-κB activation through a p38-dependent pathway that is activated locally at adhesion sites. Furthermore, altering the extracellular matrix to promote p38 activation in cells on fibronectin suppresses NF-κB activation, suggesting a novel therapeutic strategy for treating atherosclerosis

    Discovering the Data of Safety: Embry-Riddle’s Aviation Safety and Security Archives

    Get PDF
    The path to the sky and beyond has not been simple or obstacle-free, but dedicated dreamers have worked to overcome obstacles, learn from mishaps, and develop new technologies to achieve their goals. As the leading university for aviation and aerospace education, Embry-Riddle Aeronautical University maintains a firm commitment to the practice and study of safety. As part of this mission, the university has established the Aviation Safety and Security Archives (ASASA) which is a national treasure of aviation safety history and information
    corecore