17 research outputs found

    Shotgun Label-Free Quantitative Proteomics of Water-Deficit-Stressed Midmature Peanut (<i>Arachis hypogaea</i> L.) Seed

    No full text
    Legume seeds and peanuts, in particular, are an inexpensive source of plant proteins and edible oil. A comprehensive understanding of seed metabolism and the effects of water-deficit stress on the incorporation of the main storage reserves in seeds, such as proteins, fatty acids, starch, and secondary metabolites, will enhance our ability to improve seed quality and yield through molecular breeding programs. In the present study, we employed a label-free quantitative proteomics approach to study the functional proteins altered in the midmature (65–70 days postanthesis) peanut seed grown under water-deficit stress conditions. We created a pod-specific proteome database and identified 93 nonredundant, statistically significant, and differentially expressed proteins between well-watered and drought-stressed seeds. Mapping of these differential proteins revealed three candidate biological pathways (glycolysis, sucrose and starch metabolism, and fatty acid metabolism) that were significantly altered due to water-deficit stress. Differential accumulation of proteins from these pathways provides insight into the molecular mechanisms underlying the observed physiological changes, which include reductions in pod yield and biomass, reduced germination, reduced vigor, decreased seed membrane integrity, increase in storage proteins, and decreased total fatty acid content. Some of the proteins encoding rate limiting enzymes of biosynthetic pathways could be utilized by breeders to improve peanut seed production during water-deficit conditions in the field. The data have been deposited to the ProteomeXchange with identifier PXD000308

    Shotgun Label-Free Quantitative Proteomics of Water-Deficit-Stressed Midmature Peanut (<i>Arachis hypogaea</i> L.) Seed

    No full text
    Legume seeds and peanuts, in particular, are an inexpensive source of plant proteins and edible oil. A comprehensive understanding of seed metabolism and the effects of water-deficit stress on the incorporation of the main storage reserves in seeds, such as proteins, fatty acids, starch, and secondary metabolites, will enhance our ability to improve seed quality and yield through molecular breeding programs. In the present study, we employed a label-free quantitative proteomics approach to study the functional proteins altered in the midmature (65–70 days postanthesis) peanut seed grown under water-deficit stress conditions. We created a pod-specific proteome database and identified 93 nonredundant, statistically significant, and differentially expressed proteins between well-watered and drought-stressed seeds. Mapping of these differential proteins revealed three candidate biological pathways (glycolysis, sucrose and starch metabolism, and fatty acid metabolism) that were significantly altered due to water-deficit stress. Differential accumulation of proteins from these pathways provides insight into the molecular mechanisms underlying the observed physiological changes, which include reductions in pod yield and biomass, reduced germination, reduced vigor, decreased seed membrane integrity, increase in storage proteins, and decreased total fatty acid content. Some of the proteins encoding rate limiting enzymes of biosynthetic pathways could be utilized by breeders to improve peanut seed production during water-deficit conditions in the field. The data have been deposited to the ProteomeXchange with identifier PXD000308

    Low Focal Adhesion Signaling Promotes Ground State Pluripotency of Mouse Embryonic Stem Cells

    No full text
    Mouse embryonic stem cells (mESCs) can be maintained in a pluripotent state when cultured with 2 inhibitors (2i) of extracellular signal-regulated kinase (MEK) and glycogen synthase kinase-3 (GSK3), and Royan 2 inhibitors (R2i) of FGF4 and TGFβ. The molecular mechanisms that control ESC self-renewal and pluripotency are more important for translating stem cell technologies to clinical applications. In this study, we used the shotgun proteomics technique to compare the proteome of the ground state condition (R2i- and 2i-grown cells) to that of serum. Out of 1749 proteins identified, 171 proteins were differentially expressed (<i>p</i> < 0.05) in the 2i, R2i, and serum samples. Gene ontology (GO) analysis of differentially abundant proteins showed that the focal adhesion signaling pathway significantly down-regulated under ground state conditions. mESCs had highly adhesive attachment under the serum condition, whereas in the 2i and R2i culture conditions, a loss of adhesion was observed and the cells were rounded and grew in compact colonies on gelatin. Quantitative RT-PCR showed reduced expression of the integrins family in the 2i and R2i conditions. The serum culture had more prominent phosphorylation of focal adhesion kinase (FAK) compared to 2i and R2i cultures. Activity of the extracellular signal-regulated kinase (ERK)­1/2 decreased in the 2i and R2i cultures compared to serum. Activation of integrins by Mn<sup>2+</sup> in the 2i and R2i cultures resulted in reduced <i>Nanog</i> and increased the expression of lineage marker genes. In this study, we demonstrated that reduced focal adhesion enabled mESCs to be maintained in an undifferentiated and pluripotent state

    <i>DDX3Y</i>, a Male-Specific Region of Y Chromosome Gene, May Modulate Neuronal Differentiation

    No full text
    Although it is apparent that chromosome complement mediates sexually dimorphic expression patterns of some proteins that lead to functional differences, there has been insufficient evidence following the manipulation of the male-specific region of the Y chromosome (MSY) gene expression during neural development. In this study, we profiled the expression of 23 MSY genes and 15 of their X-linked homologues during neural cell differentiation of NTERA-2 human embryonal carcinoma cell line (NT2) cells in three different developmental stages using qRT-PCR, Western blotting, and immunofluorescence. The expression level of 12 Y-linked genes significantly increased over neural differentiation, including <i>RBMY1</i>, <i>EIF1AY</i>, <i>DDX3Y</i>, <i>HSFY1</i>, <i>BPY2</i>,<i> PCDH11Y</i>, <i>UTY</i>, <i>RPS4Y1</i>, <i>USP9Y</i>, <i>SRY</i>, <i>PRY</i>, and <i>ZFY</i>. We showed that siRNA-mediated knockdown of DDX3Y, a DEAD box RNA helicase enzyme, in neural progenitor cells impaired cell cycle progression and increased apoptosis, consequently interrupting differentiation. Label-free quantitative shotgun proteomics based on a spectral counting approach was then used to characterize the proteomic profile of the cells after <i>DDX3Y</i> knockdown. Among 917 reproducibly identified proteins detected, 71 proteins were differentially expressed following <i>DDX3Y</i> siRNA treatment compared with mock treated cells. Functional grouping indicated that these proteins were involved in cell cycle, RNA splicing, and apoptosis, among other biological functions. Our results suggest that MSY genes may play an important role in neural differentiation and demonstrate that <i>DDX3Y</i> could play a multifunctional role in neural cell development, probably in a sexually dimorphic manner

    Shotgun Proteomic Analysis of Long-distance Drought Signaling in Rice Roots

    No full text
    Rice (<i>Oryza sativa</i> L. cv. IR64) was grown in split-root systems to analyze long-distance drought signaling within root systems. This in turn underpins how root systems in heterogeneous soils adapt to drought. The approach was to compare four root tissues: (1) fully watered; (2) fully droughted and split-root systems where (3) one-half was watered and (4) the other half was droughted. This was specifically aimed at identifying how droughted root tissues altered the proteome of adjacent wet roots by hormone signals and how wet roots reciprocally affected dry roots hydraulically. Quantitative label-free shotgun proteomic analysis of four different root tissues resulted in identification of 1487 nonredundant proteins, with nearly 900 proteins present in triplicate in each treatment. Drought caused surprising changes in expression, most notably in partially droughted roots where 38% of proteins were altered in level compared to adjacent watered roots. Specific functional groups changed consistently in drought. Pathogenesis-related proteins were generally up-regulated in response to drought and heat-shock proteins were totally absent in roots of fully watered plants. Proteins involved in transport and oxidation–reduction reactions were also highly dependent upon drought signals, with the former largely absent in roots receiving a drought signal while oxidation–reduction proteins were strongly present during drought. Finally, two functionally contrasting protein families were compared to validate our approach, showing that nine tubulins were strongly reduced in droughted roots while six chitinases were up-regulated, even when the signal arrived remotely from adjacent droughted roots

    Shotgun Proteomic Analysis of Long-distance Drought Signaling in Rice Roots

    No full text
    Rice (<i>Oryza sativa</i> L. cv. IR64) was grown in split-root systems to analyze long-distance drought signaling within root systems. This in turn underpins how root systems in heterogeneous soils adapt to drought. The approach was to compare four root tissues: (1) fully watered; (2) fully droughted and split-root systems where (3) one-half was watered and (4) the other half was droughted. This was specifically aimed at identifying how droughted root tissues altered the proteome of adjacent wet roots by hormone signals and how wet roots reciprocally affected dry roots hydraulically. Quantitative label-free shotgun proteomic analysis of four different root tissues resulted in identification of 1487 nonredundant proteins, with nearly 900 proteins present in triplicate in each treatment. Drought caused surprising changes in expression, most notably in partially droughted roots where 38% of proteins were altered in level compared to adjacent watered roots. Specific functional groups changed consistently in drought. Pathogenesis-related proteins were generally up-regulated in response to drought and heat-shock proteins were totally absent in roots of fully watered plants. Proteins involved in transport and oxidation–reduction reactions were also highly dependent upon drought signals, with the former largely absent in roots receiving a drought signal while oxidation–reduction proteins were strongly present during drought. Finally, two functionally contrasting protein families were compared to validate our approach, showing that nine tubulins were strongly reduced in droughted roots while six chitinases were up-regulated, even when the signal arrived remotely from adjacent droughted roots

    Shotgun Proteomic Analysis of the Mexican Lime Tree Infected with “<i>Candidatus</i> <i>Phytoplasma aurantifolia</i>”

    No full text
    Infection of Mexican lime trees (<i>Citrus aurantifolia</i> L.) with the specialized bacterium “<i>Candidatus</i> <i>Phytoplasma aurantifolia</i>” causes witches’ broom disease. Witches’ broom disease has the potential to cause significant economic losses throughout western Asia and North Africa. We used label-free quantitative shotgun proteomics to study changes in the proteome of Mexican lime trees in response to infection by “<i>Ca</i>. <i>Phytoplasma aurantifolia</i>”. Of 990 proteins present in five replicates of healthy and infected plants, the abundances of 448 proteins changed significantly in response to phytoplasma infection. Of these, 274 proteins were less abundant in infected plants than in healthy plants, and 174 proteins were more abundant in infected plants than in healthy plants. These 448 proteins were involved in stress response, metabolism, growth and development, signal transduction, photosynthesis, cell cycle, and cell wall organization. Our results suggest that proteomic changes in response to infection by phytoplasmas might support phytoplasma nutrition by promoting alterations in the host’s sugar metabolism, cell wall biosynthesis, and expression of defense-related proteins. Regulation of defense-related pathways suggests that defense compounds are induced in interactions with susceptible as well as resistant hosts, with the main differences between the two interactions being the speed and intensity of the response

    Shotgun Proteomic Analysis of the Mexican Lime Tree Infected with “<i>Candidatus</i> <i>Phytoplasma aurantifolia</i>”

    No full text
    Infection of Mexican lime trees (<i>Citrus aurantifolia</i> L.) with the specialized bacterium “<i>Candidatus</i> <i>Phytoplasma aurantifolia</i>” causes witches’ broom disease. Witches’ broom disease has the potential to cause significant economic losses throughout western Asia and North Africa. We used label-free quantitative shotgun proteomics to study changes in the proteome of Mexican lime trees in response to infection by “<i>Ca</i>. <i>Phytoplasma aurantifolia</i>”. Of 990 proteins present in five replicates of healthy and infected plants, the abundances of 448 proteins changed significantly in response to phytoplasma infection. Of these, 274 proteins were less abundant in infected plants than in healthy plants, and 174 proteins were more abundant in infected plants than in healthy plants. These 448 proteins were involved in stress response, metabolism, growth and development, signal transduction, photosynthesis, cell cycle, and cell wall organization. Our results suggest that proteomic changes in response to infection by phytoplasmas might support phytoplasma nutrition by promoting alterations in the host’s sugar metabolism, cell wall biosynthesis, and expression of defense-related proteins. Regulation of defense-related pathways suggests that defense compounds are induced in interactions with susceptible as well as resistant hosts, with the main differences between the two interactions being the speed and intensity of the response

    <i>DDX3Y</i>, a Male-Specific Region of Y Chromosome Gene, May Modulate Neuronal Differentiation

    No full text
    Although it is apparent that chromosome complement mediates sexually dimorphic expression patterns of some proteins that lead to functional differences, there has been insufficient evidence following the manipulation of the male-specific region of the Y chromosome (MSY) gene expression during neural development. In this study, we profiled the expression of 23 MSY genes and 15 of their X-linked homologues during neural cell differentiation of NTERA-2 human embryonal carcinoma cell line (NT2) cells in three different developmental stages using qRT-PCR, Western blotting, and immunofluorescence. The expression level of 12 Y-linked genes significantly increased over neural differentiation, including <i>RBMY1</i>, <i>EIF1AY</i>, <i>DDX3Y</i>, <i>HSFY1</i>, <i>BPY2</i>,<i> PCDH11Y</i>, <i>UTY</i>, <i>RPS4Y1</i>, <i>USP9Y</i>, <i>SRY</i>, <i>PRY</i>, and <i>ZFY</i>. We showed that siRNA-mediated knockdown of DDX3Y, a DEAD box RNA helicase enzyme, in neural progenitor cells impaired cell cycle progression and increased apoptosis, consequently interrupting differentiation. Label-free quantitative shotgun proteomics based on a spectral counting approach was then used to characterize the proteomic profile of the cells after <i>DDX3Y</i> knockdown. Among 917 reproducibly identified proteins detected, 71 proteins were differentially expressed following <i>DDX3Y</i> siRNA treatment compared with mock treated cells. Functional grouping indicated that these proteins were involved in cell cycle, RNA splicing, and apoptosis, among other biological functions. Our results suggest that MSY genes may play an important role in neural differentiation and demonstrate that <i>DDX3Y</i> could play a multifunctional role in neural cell development, probably in a sexually dimorphic manner

    Shotgun Proteomic Analysis of the Mexican Lime Tree Infected with “<i>Candidatus</i> <i>Phytoplasma aurantifolia</i>”

    No full text
    Infection of Mexican lime trees (<i>Citrus aurantifolia</i> L.) with the specialized bacterium “<i>Candidatus</i> <i>Phytoplasma aurantifolia</i>” causes witches’ broom disease. Witches’ broom disease has the potential to cause significant economic losses throughout western Asia and North Africa. We used label-free quantitative shotgun proteomics to study changes in the proteome of Mexican lime trees in response to infection by “<i>Ca</i>. <i>Phytoplasma aurantifolia</i>”. Of 990 proteins present in five replicates of healthy and infected plants, the abundances of 448 proteins changed significantly in response to phytoplasma infection. Of these, 274 proteins were less abundant in infected plants than in healthy plants, and 174 proteins were more abundant in infected plants than in healthy plants. These 448 proteins were involved in stress response, metabolism, growth and development, signal transduction, photosynthesis, cell cycle, and cell wall organization. Our results suggest that proteomic changes in response to infection by phytoplasmas might support phytoplasma nutrition by promoting alterations in the host’s sugar metabolism, cell wall biosynthesis, and expression of defense-related proteins. Regulation of defense-related pathways suggests that defense compounds are induced in interactions with susceptible as well as resistant hosts, with the main differences between the two interactions being the speed and intensity of the response
    corecore