16,111 research outputs found

    Rashba spin-orbit interaction enhanced by graphene in-plane deformations

    Full text link
    Graphene consists in a single-layer carbon crystal where 2pzp_z electrons display a linear dispersion relation in the vicinity of the Fermi level, conveniently described by a massless Dirac equation in 2+12+1 spacetime. Spin-orbit effects open a gap in the band structure and offer perspectives for the manipulation of the conducting electrons spin. Ways to manipulate spin-orbit couplings in graphene have been generally assessed by proximity effects to metals that do not compromise the mobility of the unperturbed system and are likely to induce strain in the graphene layer. In this work we explore the U(1)×SU(2)\rm{U(1)}\times SU(2) gauge fields that result from the uniform stretching of a graphene sheet under a perpendicular electric field. Considering such deformations is particularly relevant due to the counter-intuitive enhancement of the Rashba coupling between 30-50% for small bond deformations well known from tight-binding and DFT calculations. We report the accessible changes that can be operated in the band structure in the vicinity of the K points as a function of the deformation strength and direction.Comment: 10 pages, 7 figure

    Orthogonality Relations and Supercharacter Formulas of U(m|n) Representations

    Full text link
    In this paper we obtain the orthogonality relations for the supergroup U(m|n), which are remarkably different from the ones for the U(N) case. We extend our results for ordinary representations, obtained some time ago, to the case of complex conjugated and mixed representations. Our results are expressed in terms of the Young tableaux notation for irreducible representations. We use the supersymmetric Harish-Chandra-Itzykson-Zuber integral and the character expansion technique as mathematical tools for deriving these relations. As a byproduct we also obtain closed expressions for the supercharacters and dimensions of some particular irreducible U(m|n) representations. A new way of labeling the U(m|n) irreducible representations in terms of m + n numbers is proposed. Finally, as a corollary of our results, new identities among the dimensions of the irreducible representations of the unitary group U(N) are presented.Comment: 56 pages, LaTeX, changes only in the writing of the titl

    Infinite charge mobility in muscovite at 300K

    Get PDF
    Evidence is presented for infinite charge mobility in natural crystals of muscovite mica at room temperature. Muscovite has a basic layered structure containing a flat monatomic sheet of potassium sandwiched between mirror silicate layers. It is an excellent electrical insulator. Studies of defects in muscovite crystals indicated that positive charge could propagate over great distances along atomic chains in the potassium sheets in absence of an applied electric potential. The charge moved in association with anharmonic lattice excitations that moved at about sonic speed and created by nuclear recoil of the radioactive isotope K40. This was verified by measuring currents passing through crystals when irradiated with energetic alpha particles at room temperature. The charge propagated more than 1000 times the range of the alpha particles of average energy and 250 times the range of channelling particles of maximum energy. The range is limited only by size of the crystal.Comment: 6 pages, 8 figure

    Antiresonances as precursors of decoherence

    Full text link
    We show that, in presence of a complex spectrum, antiresonances act as a precursor for dephasing enabling the crossover to a fully decoherent transport even within a unitary Hamiltonian description. This general scenario is illustrated here by focusing on a quantum dot coupled to a chaotic cavity containing a finite, but large, number of states using a Hamiltonian formulation. For weak coupling to a chaotic cavity with a sufficiently dense spectrum, the ensuing complex structure of resonances and antiresonances leads to phase randomization under coarse graining in energy. Such phase instabilities and coarse graining are the ingredients for a mechanism producing decoherence and thus irreversibility. For the present simple model one finds a conductance that coincides with the one obtained by adding a ficticious voltage probe within the Landauer-Buettiker picture. This sheds new light on how the microscopic mechanisms that produce phase fluctuations induce decoherence.Comment: 7 pages, 2 figures, to appear in Europhys. Let
    corecore