91 research outputs found

    On the Assembly Bias of Cool Core Clusters Traced by Hα\alpha Nebulae

    Get PDF
    Do cool-core (CC) and noncool-core (NCC) clusters live in different environments? We make novel use of Hα\alpha emission lines in the central galaxies of redMaPPer clusters as proxies to construct large (1,000's) samples of CC and NCC clusters, and measure their relative assembly bias using both clustering and weak lensing. We increase the statistical significance of the bias measurements from clustering by cross-correlating the clusters with an external galaxy redshift catalog from the Sloan Digital Sky Survey III, the LOWZ sample. Our cross-correlations can constrain assembly bias up to a statistical uncertainty of 6%. Given our Hα\alpha criteria for CC and NCC, we find no significant differences in their clustering amplitude. Interpreting this difference as the absence of halo assembly bias, our results rule out the possibility of having different large-scale (tens of Mpc) environments as the source of diversity observed in cluster cores. Combined with recent observations of the overall mild evolution of CC and NCC properties, such as central density and CC fraction, this would suggest that either the cooling properties of the cluster core are determined early on solely by the local (<200 kpc) gas properties at formation or that local merging leads to stochastic CC relaxation and disruption in a periodic way, preserving the average population properties over time. Studying the small-scale clustering in clusters at high redshift would help shed light on the exact scenario.Comment: 17 pages, 9 figures, 2 tables, to be submitted to ApJ; comments welcom

    Discovery of a new fundamental plane dictating galaxy cluster evolution from gravitational lensing

    Get PDF
    In cold dark matter (CDM) cosmology, objects in the Universe have grown under the effect of gravity of dark matter. The intracluster gas in a galaxy cluster was heated when the dark-matter halo formed through gravitational collapse. The potential energy of the gas was converted to thermal energy through this process. However, this process and the thermodynamic history of the gas have not been clearly characterized in connection with with the formation and evolution of the internal structure of dark-matter halos. Here, we show that observational CLASH data of high-mass galaxy clusters lie on a plane in the three-dimensional logarithmic space of their characteristic radius rsr_s, mass MsM_s, and X-ray temperature TXT_X with a very small orthogonal scatter. The tight correlation indicates that the gas temperature was determined at a specific cluster formation time, which is encoded in rsr_s and MsM_s. The plane is tilted with respect to TXMs/rsT_X \propto M_s/r_s, which is the plane expected in case of simplified virial equilibrium. We show that this tilt can be explained by a similarity solution, which indicates that clusters are not isolated but continuously growing through matter accretion from their outer environments. Numerical simulations reproduce the observed plane and its angle. This result holds independently of the gas physics implemented in the code, revealing the fundamental origin of this plane.Comment: Replaced with a revised version to match the ApJ accepted versio

    Halo Concentrations and the Fundamental Plane of Galaxy Clusters

    Get PDF
    According to the standard cold dark matter (CDM) cosmology, the structure of dark halos including those of galaxy clusters reflects their mass accretion history. Older clusters tend to be more concentrated than younger clusters. Their structure, represented by the characteristic radius rsr_s and mass MsM_s of the Navarro--Frenk--White (NFW) density profile, is related to their formation time. In~this study, we showed that rsr_s, MsM_s, and the X-ray temperature of the intracluster medium (ICM), TXT_X, form a thin plane in the space of (logrs,logMs,logTX)(\log r_s, \log M_s, \log T_X). This tight correlation indicates that the ICM temperature is also determined by the formation time of individual clusters. Numerical simulations showed that clusters move along the fundamental plane as they evolve. The plane and the cluster evolution within the plane could be explained by a similarity solution of structure formation of the universe. The angle of the plane shows that clusters have not achieved "virial equilibrium" in the sense that mass/size growth and pressure at the boundaries cannot be ignored. The distribution of clusters on the plane was related to the intrinsic scatter in the halo concentration--mass relation, which originated from the variety of cluster ages. The well-known mass--temperature relation of clusters (MΔTX3/2M_\Delta\propto T_X^{3/2}) can be explained by the fundamental plane and the mass dependence of the halo concentration without the assumption of virial equilibrium. The fundamental plane could also be used for calibration of cluster masses.Comment: Invited review article, to be published in "From Dark Haloes to Visible Galaxies", special issue of Galaxie

    Three-dimensional Multi-probe Analysis of the Galaxy Cluster A1689

    Get PDF
    We perform a 3D multi-probe analysis of the rich galaxy cluster A1689 by combining improved weak-lensing data from new BVRi'z' Subaru/Suprime-Cam observations with strong-lensing, X-ray, and Sunyaev-Zel'dovich effect (SZE) data sets. We reconstruct the projected matter distribution from a joint weak-lensing analysis of 2D shear and azimuthally integrated magnification constraints, the combination of which allows us to break the mass-sheet degeneracy. The resulting mass distribution reveals elongation with axis ratio ~0.7 in projection. When assuming a spherical halo, our full weak-lensing analysis yields a projected concentration of c200c2D=8.9±1.1c_{200c}^{2D}=8.9\pm 1.1 (cvir2D11c_{vir}^{2D}\sim 11), consistent with and improved from earlier weak-lensing work. We find excellent consistency between weak and strong lensing in the region of overlap. In a parametric triaxial framework, we constrain the intrinsic structure and geometry of the matter and gas distributions, by combining weak/strong lensing and X-ray/SZE data with minimal geometric assumptions. We show that the data favor a triaxial geometry with minor-major axis ratio 0.39+/-0.15 and major axis closely aligned with the line of sight (22+/-10 deg). We obtain M200c=(1.2±0.2)×1015M/hM_{200c}=(1.2\pm 0.2)\times 10^{15} M_{\odot}/h and c200c=8.4±1.3c_{200c}=8.4\pm 1.3, which overlaps with the >1σ>1\sigma tail of the predicted distribution. The shape of the gas is rounder than the underlying matter but quite elongated with minor-major axis ratio 0.60+/-0.14. The gas mass fraction within 0.9Mpc is 10^{+3}_{-2}%. The thermal gas pressure contributes to ~60% of the equilibrium pressure, indicating a significant level of non-thermal pressure support. When compared to Planck's hydrostatic mass estimate, our lensing measurements yield a spherical mass ratio of MPlanck/MGL=0.70±0.15M_{Planck}/M_{GL}=0.70\pm 0.15 and 0.58±0.100.58\pm 0.10 with and without corrections for lensing projection effects, respectively.Comment: Accepted by ApJ. Minor textual changes to improve clarity (e.g., 5. HST STRONG-LENSING ANALYSIS). 26 pages, 17 figures. A version with high-resolution figures is available at http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/Umetsu15/umetsu15.pd

    Comparison of Cluster Lensing Profiles with Lambda CDM Predictions

    Full text link
    We derive lens distortion and magnification profiles of four well known clusters observed with Subaru. Each cluster is very well fitted by the general form predicted for Cold Dark Matter (CDM) dominated halos, with good consistency found between the independent distortion and magnification measurements. The inferred level of mass concentration is surprisingly high, 8 = 10.4 \pm 0.9), compared to the relatively shallow profiles predicted by the Lambda CDM model, c_{vir}=5.1 \pm 1.1 (for =1.25\times 10^{15}M_{\odot}/h). This represents a 4sigma discrepancy, and includes the relatively modest effects of projection bias and profile evolution derived from N-body simulations, which oppose each other with little residual effect. In the context of CDM based cosmologies, this discrepancy implies clusters collapse earlier (z\geq 1) than predicted (z<0.5), when the Universe was correspondingly denser.Comment: Accepted version in ApJL, minor change
    corecore