674 research outputs found

    Special Issue Biomarkers and Surrogate Endpoints: Lessons Learned From Glaucoma

    Get PDF
    With the recent progress in imaging technologies for assessment of structural damage in glaucoma, a debate has emerged on whether these measurements can be used as valid surrogate endpoints in clinical trials evaluating new therapies for the disease. A discussion of surrogates should be grounded on knowledge acquired from their use in other areas of medicine as well as regulatory requirements. This article reviews the conditions for valid surrogacy in the context of glaucoma clinical trials and critically evaluates the role of biomarkers such as IOP and imaging measurements as potential surrogates for clinically relevant outcomes. Valid surrogate endpoints must be able to predict a clinically relevant endpoint, such as loss of vision or decrease in quality of life. In addition, the effect of a proposed treatment on the surrogate must capture the effect of the treatment on the clinically relevant endpoint. Despite its widespread use in clinical trials, no proper validation of IOP as a surrogate endpoint has yet been conducted for any class of IOP-lowering treatments. Although strong evidence has accumulated about imaging measurements as predictors of relevant functional outcomes in glaucoma, there is still insufficient evidence to support their use as valid surrogate endpoints. However, imaging biomarkers could potentially be used as part of composite endpoints in glaucoma trials, overcoming weaknesses of the use of structural or functional endpoints in isolation. Efforts should be taken to properly design and conduct studies that can provide proper validation of potential biomarkers in glaucoma clinical trials

    Estimating the Risk of Developing Glaucoma

    Get PDF
    The issue of risk assessment in glaucoma has received increasing attention in the past few years since the publication of results from the Ocular Hypertension Treatment Study. Predictive models have been developed in order to estimate the risk that patients with ocular hypertension will develop glaucoma if left untreated. The purpose of this article is to review issues on the development and validation of predictive models to estimate risk of glaucoma development. Current models are reviewed and details about their development and validation are provided

    Structural Change Can Be Detected in Advanced-Glaucoma Eyes.

    Get PDF
    PurposeTo compare spectral-domain optical coherence tomography (SD-OCT) standard structural measures and a new three-dimensional (3D) volume optic nerve head (ONH) change detection method for detecting change over time in severely advanced-glaucoma (open-angle glaucoma [OAG]) patients.MethodsThirty-five eyes of 35 patients with very advanced glaucoma (defined as a visual field mean deviation < -21 dB) and 46 eyes of 30 healthy subjects to estimate aging changes were included. Circumpapillary retinal fiber layer thickness (cpRNFL), minimum rim width (MRW), and macular retinal ganglion cell-inner plexiform layer (GCIPL) thicknesses were measured using the San Diego Automated Layer Segmentation Algorithm (SALSA). Progression was defined as structural loss faster than 95th percentile of healthy eyes. Three-dimensional volume ONH change was estimated using the Bayesian-kernel detection scheme (BKDS), which does not require extensive retinal layer segmentation.ResultsThe number of progressing glaucoma eyes identified was highest for 3D volume BKDS (13, 37%), followed by GCPIL (11, 31%), cpRNFL (4, 11%), and MRW (2, 6%). In advanced-OAG eyes, only the mean rate of GCIPL change reached statistical significance, -0.18 μm/y (P = 0.02); the mean rates of cpRNFL and MRW change were not statistically different from zero. In healthy eyes, the mean rates of cpRNFL, MRW, and GCIPL change were significantly different from zero. (all P < 0.001).ConclusionsGanglion cell-inner plexiform layer and 3D volume BKDS show promise for identifying change in severely advanced glaucoma. These results suggest that structural change can be detected in very advanced disease. Longer follow-up is needed to determine whether changes identified are false positives or true progression

    Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression.

    Get PDF
    Purpose:To apply computational techniques to wide-angle swept-source optical coherence tomography (SS-OCT) images to identify novel, glaucoma-related structural features and improve detection of glaucoma and prediction of future glaucomatous progression. Methods:Wide-angle SS-OCT, OCT circumpapillary retinal nerve fiber layer (cpRNFL) circle scans spectral-domain (SD)-OCT, standard automated perimetry (SAP), and frequency doubling technology (FDT) visual field tests were completed every 3 months for 2 years from a cohort of 28 healthy participants (56 eyes) and 93 glaucoma participants (179 eyes). RNFL thickness maps were extracted from segmented SS-OCT images and an unsupervised machine learning approach based on principal component analysis (PCA) was used to identify novel structural features. Area under the receiver operating characteristic curve (AUC) was used to assess diagnostic accuracy of RNFL PCA for detecting glaucoma and progression compared to SAP, FDT, and cpRNFL measures. Results:The RNFL PCA features were significantly associated with mean deviation (MD) in both SAP (R2 = 0.49, P < 0.0001) and FDT visual field testing (R2 = 0.48, P < 0.0001), and with mean circumpapillary RNFL thickness (cpRNFLt) from SD-OCT (R2 = 0.58, P < 0.0001). The identified features outperformed each of these measures in detecting glaucoma with an AUC of 0.95 for RNFL PCA compared to an 0.90 for mean cpRNFLt (P = 0.09), 0.86 for SAP MD (P = 0.034), and 0.83 for FDT MD (P = 0.021). Accuracy in predicting progression was also significantly higher for RNFL PCA compared to SAP MD, FDT MD, and mean cpRNFLt (P = 0.046, P = 0.007, and P = 0.044, respectively). Conclusions:A computational approach can identify structural features that improve glaucoma detection and progression prediction
    • …
    corecore