67 research outputs found

    Meat goat enterprise efficiency analysis in the Southeastern United States

    Get PDF
    © The Author(s) 2016. Meat goat enterprise efficiency was estimated using an input distance function (IDF) by applying stochastic production frontier techniques for the southeastern U.S. region. We found increasing returns to scale and scope economies for southeastern U.S. meat goat enterprises. Mean technical efficiency was 0.81. Our results suggest southeastern U.S. meat goat enterprises can be scale efficient if their size of operation is \u3e~60 goats or \u3e40 breeding does. Cost and IDF analyses show input expenses decreased substantially with increasing scale of operations in southeastern U.S. meat goat production. Empirical Monte Carlo simulation techniques show consistency of small-sample properties for the IDF

    Growth and development symposium: Stem and progenitor cells in animal growth: The regulation of beef quality by resident progenitor cells

    Get PDF
    © The Author(s) 2019. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. The intramuscular adipose tissue deposition in the skeletal muscle of beef cattle is a highly desired trait essential for high-quality beef. In contrast, the excessive accumulation of crosslinked collagen in intramuscular connective tissue contributes to beef toughness. Recent studies revealed that adipose tissue and connective tissue share an embryonic origin in mice and may be derived from a common immediate bipotent precursor in mice and humans. Having the same linkages in the development of adipose tissue and connective tissue in beef, the lineage commitment and differentiation of progenitor cells giving rise to these tissues may directly affect beef quality. It has been shown that these processes are regulated by some key transcription regulators and are subjective to epigenetic modifications such as DNA methylation, histone modifications, and microRNAs. Continued exploration of relevant regulatory pathways is very important for the identification of mechanisms influencing meat quality and the development of proper management strategies for beef quality improvement

    Selection of Breeding Stock by U.S. Meat Goat Producers

    Get PDF
    Using nationwide survey data, we investigate U.S. meat goat producer preferences and willingness to pay for meat goat breeding stock attributes. Discrete choice experiments were employed, and mixed logit and latent class models were used for analysis. Results showed that producers preferred animals that were highly masculine/feminine, had good structure and soundness, and were of the Boer breed, whereas they preferred fewer animals that were older, of Kiko and Spanish breeds, and priced higher. Significant preference heterogeneity was found among the respondents. Larger-scale producers had greater preference for high masculinity/femininity, good structure and soundness, and Boer bucks

    A Single-Cell Atlas of Bovine Skeletal Muscle Reveals Mechanisms Regulating Intramuscular Adipogenesis and Fibrogenesis

    Get PDF
    Background Intramuscular fat (IMF) and intramuscular connective tissue (IMC) are often seen in human myopathies and are central to beef quality. The mechanisms regulating their accumulation remain poorly understood. Here, we explored the possibility of using beef cattle as a novel model for mechanistic studies of intramuscular adipogenesis and fibrogenesis. Methods Skeletal muscle single-cell RNAseq was performed on three cattle breeds, including Wagyu (high IMF), Brahman (abundant IMC but scarce IMF), and Wagyu/Brahman cross. Sophisticated bioinformatics analyses, including clustering analysis, gene set enrichment analyses, gene regulatory network construction, RNA velocity, pseudotime analysis, and cell-cell communication analysis, were performed to elucidate heterogeneities and differentiation processes of individual cell types and differences between cattle breeds. Experiments were conducted to validate the function and specificity of identified key regulatory and marker genes. Integrated analysis with multiple published human and non-human primate datasets was performed to identify common mechanisms. Results A total of 32 708 cells and 21 clusters were identified, including fibro/adipogenic progenitor (FAP) and other resident and infiltrating cell types. We identified an endomysial adipogenic FAP subpopulation enriched for COL4A1 and CFD (log2FC = 3.19 and 1.92, respectively; P \u3c 0.0001) and a perimysial fibrogenic FAP subpopulation enriched for COL1A1 and POSTN (log2FC = 1.83 and 0.87, respectively; P \u3c 0.0001), both of which were likely derived from an unspecified subpopulation. Further analysis revealed more progressed adipogenic programming of Wagyu FAPs and more advanced fibrogenic programming of Brahman FAPs. Mechanistically, NAB2 drives CFD expression, which in turn promotes adipogenesis. CFD expression in FAPs of young cattle before the onset of intramuscular adipogenesis was predictive of IMF contents in adulthood (R2 = 0.885, P \u3c 0.01). Similar adipogenic and fibrogenic FAPs were identified in humans and monkeys. In aged humans with metabolic syndrome and progressed Duchenne muscular dystrophy (DMD) patients, increased CFD expression was observed (P \u3c 0.05 and P \u3c 0.0001, respectively), which was positively correlated with adipogenic marker expression, including ADIPOQ (R2 = 0.303, P \u3c 0.01; and R2 = 0.348, P \u3c 0.01, respectively). The specificity of Postn/POSTN as a fibrogenic FAP marker was validated using a lineage-tracing mouse line. POSTN expression was elevated in Brahman FAPs (P \u3c 0.0001) and DMD patients (P \u3c 0.01) but not in aged humans. Strong interactions between vascular cells and FAPs were also identified. Conclusions Our study demonstrates the feasibility of beef cattle as a model for studying IMF and IMC. We illustrate the FAP programming during intramuscular adipogenesis and fibrogenesis and reveal the reliability of CFD as a predictor and biomarker of IMF accumulation in cattle and humans

    Microenvironmental Influence on Pre-Clinical Activity of Polo-Like Kinase Inhibition in Multiple Myeloma: Implications for Clinical Translation

    Get PDF
    Polo-like kinases (PLKs) play an important role in cell cycle progression, checkpoint control and mitosis. The high mitotic index and chromosomal instability of advanced cancers suggest that PLK inhibitors may be an attractive therapeutic option for presently incurable advanced neoplasias with systemic involvement, such as multiple myeloma (MM). We studied the PLK 1, 2, 3 inhibitor BI 2536 and observed potent (IC50<40 nM) and rapid (commitment to cell death <24 hrs) in vitro activity against MM cells in isolation, as well as in vivo activity against a traditional subcutaneous xenograft mouse model. Tumor cells in MM patients, however, don't exist in isolation, but reside in and interact with the bone microenvironment. Therefore conventional in vitro and in vivo preclinical assays don't take into account how interactions between MM cells and the bone microenvironment can potentially confer drug resistance. To probe this question, we performed tumor cell compartment-specific bioluminescence imaging assays to compare the preclinical anti-MM activity of BI 2536 in vitro in the presence vs. absence of stromal cells or osteoclasts. We observed that the presence of these bone marrow non-malignant cells led to decreased anti-MM activity of BI 2536. We further validated these results in an orthotopic in vivo mouse model of diffuse MM bone lesions where tumor cells interact with non-malignant cells of the bone microenvironment. We again observed that BI 2536 had decreased activity in this in vivo model of tumor-bone microenvironment interactions highlighting that, despite BI 2536's promising activity in conventional assays, its lack of activity in microenvironmental models raises concerns for its clinical development for MM. More broadly, preclinical drug testing in the absence of relevant tumor microenvironment interactions may overestimate potential clinical activity, thus explaining at least in part the gap between preclinical vs. clinical efficacy in MM and other cancers

    Personal hygiene

    No full text
    © 2005 by Taylor & Francis Group, LLC. More than 215 million cases of infectious disease are caused by foodborne illness in industrialized countries each year, but the true incidence is difficult to determine because actual illness cases are probably underreported (1,2). The five major risk factors related to employee behaviors and preparation practices in retail and food service establishments that have been identified as contributing to foodborne illness are improper holding temperatures, inadequate cooking, contaminated equipment, food from unsafe sources, and poor personal hygiene (3). The five key public health interventions to protect consumer health are demonstration of knowledge, employee health controls, controlling hands as a vehicle of contamination, time and temperature parameters for controlling pathogens, and the consumer advisory notices (3). Three of the important interventions rely directly or indirectly on the employee and individual personal hygiene
    corecore