319 research outputs found

    Actinide-rich and Actinide-poor rr-Process Enhanced Metal-Poor Stars do not Require Separate rr-Process Progenitors

    Full text link
    The astrophysical production site of the heaviest elements in the universe remains a mystery. Incorporating heavy element signatures of metal-poor, rr-process enhanced stars into theoretical studies of rr-process production can offer crucial constraints on the origin of heavy elements. In this study, we introduce and apply the "Actinide-Dilution with Matching" model to a variety of stellar groups ranging from actinide-deficient to actinide-enhanced to empirically characterize rr-process ejecta mass as a function of electron fraction. We find that actinide-boost stars do not indicate the need for a unique and separate rr-process progenitor. Rather, small variations of neutron richness within the same type of rr-process event can account for all observed levels of actinide enhancements. The very low-YeY_e, fission-cycling ejecta of an rr-process event need only constitute 10-30% of the total ejecta mass to accommodate most actinide abundances of metal-poor stars. We find that our empirical YeY_e distributions of ejecta are similar to those inferred from studies of GW170817 mass ejecta ratios, which is consistent with neutron-star mergers being a source of the heavy elements in metal-poor, rr-process enhanced stars.Comment: 14 pages, 11 figures, Submitted to Ap

    Superheavy Elements in Kilonovae

    Full text link
    As LIGO-Virgo-KAGRA enters its fourth observing run, a new opportunity to search for electromagnetic counterparts of compact object mergers will also begin. The light curves and spectra from the first "kilonova" associated with a binary neutron star binary (NSM) suggests that these sites are hosts of the rapid neutron capture ("rr") process. However, it is unknown just how robust elemental production can be in mergers. Identifying signposts of the production of particular nuclei is critical for fully understanding merger-driven heavy-element synthesis. In this study, we investigate the properties of very neutron rich nuclei for which superheavy elements (Zβ‰₯104Z\geq 104) can be produced in NSMs and whether they can similarly imprint a unique signature on kilonova light-curve evolution. A superheavy-element signature in kilonovae represents a route to establishing a lower limit on heavy-element production in NSMs as well as possibly being the first evidence of superheavy element synthesis in nature. Favorable NSMs conditions yield a mass fraction of superheavy elements is XZβ‰₯104β‰ˆ3Γ—10βˆ’2X_{Z\geq 104}\approx 3\times 10^{-2} at 7.5 hours post-merger. With this mass fraction of superheavy elements, we find that kilonova light curves may appear similar to those arising from lanthanide-poor ejecta. Therefore, photometric characterizations of superheavy-element rich kilonova may possibly misidentify them as lanthanide-poor events.Comment: 9 pages, 5 figure

    Primary vs. Secondary Antibody Deficiency: Clinical Features and Infection Outcomes of Immunoglobulin Replacement

    Get PDF
    <div><p>Secondary antibody deficiency can occur as a result of haematological malignancies or certain medications, but not much is known about the clinical and immunological features of this group of patients as a whole. Here we describe a cohort of 167 patients with primary or secondary antibody deficiencies on immunoglobulin (Ig)-replacement treatment. The demographics, causes of immunodeficiency, diagnostic delay, clinical and laboratory features, and infection frequency were analysed retrospectively. Chemotherapy for B cell lymphoma and the use of Rituximab, corticosteroids or immunosuppressive medications were the most common causes of secondary antibody deficiency in this cohort. There was no difference in diagnostic delay or bronchiectasis between primary and secondary antibody deficiency patients, and both groups experienced disorders associated with immune dysregulation. Secondary antibody deficiency patients had similar baseline levels of serum IgG, but higher IgM and IgA, and a higher frequency of switched memory B cells than primary antibody deficiency patients. Serious and non-serious infections before and after Ig-replacement were also compared in both groups. Although secondary antibody deficiency patients had more serious infections before initiation of Ig-replacement, treatment resulted in a significant reduction of serious and non-serious infections in both primary and secondary antibody deficiency patients. Patients with secondary antibody deficiency experience similar delays in diagnosis as primary antibody deficiency patients and can also benefit from immunoglobulin-replacement treatment.</p></div

    Performance of ACMG-AMP Variant-Interpretation Guidelines among Nine Laboratories in the Clinical Sequencing Exploratory Research Consortium

    Get PDF
    Evaluating the pathogenicity of a variant is challenging given the plethora of types of genetic evidence that laboratories consider. Deciding how to weigh each type of evidence is difficult, and standards have been needed. In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published guidelines for the assessment of variants in genes associated with Mendelian diseases. Nine molecular diagnostic laboratories involved in the Clinical Sequencing Exploratory Research (CSER) consortium piloted these guidelines on 99 variants spanning all categories (pathogenic, likely pathogenic, uncertain significance, likely benign, and benign). Nine variants were distributed to all laboratories, and the remaining 90 were evaluated by three laboratories. The laboratories classified each variant by using both the laboratory's own method and the ACMG-AMP criteria. The agreement between the two methods used within laboratories was high (K-alpha = 0.91) with 79% concordance. However, there was only 34% concordance for either classification system across laboratories. After consensus discussions and detailed review of the ACMG-AMP criteria, concordance increased to 71%. Causes of initial discordance in ACMG-AMP classifications were identified, and recommendations on clarification and increased specification of the ACMG-AMP criteria were made. In summary, although an initial pilot of the ACMG-AMP guidelines did not lead to increased concordance in variant interpretation, comparing variant interpretations to identify differences and having a common framework to facilitate resolution of those differences were beneficial for improving agreement, allowing iterative movement toward increased reporting consistency for variants in genes associated with monogenic disease
    • …
    corecore