505 research outputs found

    Short-Term Evaluation of Cellular Fate in an Ovine Bone Formation Model.

    Get PDF
    The ovine critical-sized defect model provides a robust preclinical model for testing tissue-engineered constructs for use in the treatment of non-union bone fractures and severe trauma. A critical question in cell-based therapies is understanding the optimal therapeutic cell dose. Key to defining the dose and ensuring successful outcomes is understanding the fate of implanted cells, e.g., viability, bio-distribution and exogenous infiltration post-implantation. This study evaluates such parameters in an ovine critical-sized defect model 2 and 7 days post-implantation. The fate of cell dose and behaviour post-implantation when combined with nanomedicine approaches for multi-model tracking and remote control using external magnetic fields is also addressed. Autologous STRO-4 selected mesenchymal stromal cells (MSCs) were labelled with a fluorescent lipophilic dye (CM-Dil), functionalised magnetic nanoparticles (MNPs) and delivered to the site within a naturally derived bone extracellular matrix (ECM) gel. Encapsulated cells were implanted within a critical-sized defect in an ovine medial femoral condyle and exposed to dynamic gradients of external magnetic fields for 1 h per day. Sheep were sacrificed at 2 and 7 days post-initial surgery where ECM was harvested. STRO-4-positive (STRO-4+) stromal cells expressed osteocalcin and survived within the harvested gels at day 2 and day 7 with a 50% loss at day 2 and a further 45% loss at 7 days. CD45-positive leucocytes were also observed in addition to endogenous stromal cells. No elevation in serum C-reactive protein (CRP) or non-haem iron levels was observed following implantation in groups containing MNPs with or without magnetic field gradients. The current study demonstrates how numbers of therapeutic cells reduce substantially after implantation in the repair site. Cell death is accompanied by enhanced leucocyte invasion, but not by inflammatory blood marker levels. Crucially, a proportion of implanted STRO-4+ stromal cells expressed osteocalcin, which is indicative of osteogenic differentiation. Furthermore, MNP labelling did not alter cell number or result in a further deleterious impact on stromal cells following implantation

    Dysplasia of the Upper Aerodigestive Tract Squamous Epithelium

    Get PDF
    Dysplasia of the oral, laryngeal and oropharyngeal stratified squamous epithelia is a microscopically defined change that may occur in clinically identifiable lesions including erythroplakia, leukoplakia and erythroleukoplakia, lesions that convey a heightened risk for carcinomatous progression. Dysplastic lesions have been classified microscopically according to degree of cytologic atypia and changes in architectural patterns, usually on a three part or four part gradation scale. Vocal cord epithelial lesions are graded according to either the Ljubljana or the World Health Organization (WHO) system whereas oral dysplasias are generally classified according to WHO criteria. Cytologically atypical cells are considered to represent precancerous changes predicting an increase risk for carcinomatous transformation. Inter- and intra-rater reliability studies among pathologists have disclosed low correlation coefficients for four part grading systems, whereas improved agreement is achieved (kappa correlation values) using the Ljubljana systems. Evidence forwarded by some studies supports the prognostic value of progressively severe dysplastic changes for carcinomatous transformation; however, some studies indicate that the presence of a clinically defined lesion without microscopic evidence of dysplasia also connotes increased risk for carcinomatous transformation. Loss of heterozygosity (LOH) at 3p and 9p microsatellite domains, DNA ploidy analysis and nuclear image analyses may have predictive value as molecular and histomorphological biomarkers

    A transient liquid-like phase in the displacement cascades of zircon, hafnon and thorite

    Full text link
    The study of radiation effects in solids is important for the development of 'radiation-resistant' materials for fission-reactor applications'. The effects of heavy-ion irradiation in the isostructural orthosilicates zircon (ZrSiO4), hafnon (HfSiO4) and thorite (ThSiO4) are particularly important because these minerals are under active investigation for use as a waste form for plutonium-239 resulting from the dismantling of nuclear weapons(2-4). During ion irradiation, localized 'cascades' of displaced atoms can form as a result of ballistic collisions in the target material, and the temperature inside these regions may for a short time exceed the bulk melting temperature. Whether these cascades do indeed generate a localized liquid state(5-8) has, however, remained unclear. Here we investigate the irradiation-induced decomposition of zircon and hafnon, and find evidence for formation of a liquidlike state in the displacement cascades. Our results explain the frequent occurrence of ZrO2 in natural amorphous zircong(9-12) Moreover, we conclude that zircon-based nuclear waste forms should be maintained within strict temperature Limits, to avoid potentially detrimental irradiation-induced amorphization or phase decomposition of the zircon.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62853/1/395056a0.pd

    Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle

    Get PDF
    Background Domestication of the now-extinct wild aurochs, Bos primigenius, gave rise to the two major domestic extant cattle taxa, B. taurus and B. indicus. While previous genetic studies have shed some light on the evolutionary relationships between European aurochs and modern cattle, important questions remain unanswered, including the phylogenetic status of aurochs, whether gene flow from aurochs into early domestic populations occurred, and which genomic regions were subject to selection processes during and after domestication. Here, we address these questions using whole-genome sequencing data generated from an approximately 6,750-year-old British aurochs bone and genome sequence data from 81 additional cattle plus genome-wide single nucleotide polymorphism data from a diverse panel of 1,225 modern animals. Results Phylogenomic analyses place the aurochs as a distinct outgroup to the domestic B. taurus lineage, supporting the predominant Near Eastern origin of European cattle. Conversely, traditional British and Irish breeds share more genetic variants with this aurochs specimen than other European populations, supporting localized gene flow from aurochs into the ancestors of modern British and Irish cattle, perhaps through purposeful restocking by early herders in Britain. Finally, the functions of genes showing evidence for positive selection in B. taurus are enriched for neurobiology, growth, metabolism and immunobiology, suggesting that these biological processes have been important in the domestication of cattle. Conclusions This work provides important new information regarding the origins and functional evolution of modern cattle, revealing that the interface between early European domestic populations and wild aurochs was significantly more complex than previously thought

    Musculotopic organization of the motor neurons supplying the mouse hindlimb muscles: a quantitative study using Fluoro-Gold retrograde tracing

    Get PDF
    We have mapped the motor neurons (MNs) supplying the major hindlimb muscles of transgenic (C57/BL6J-ChAT-EGFP) and wild-type (C57/BL6J) mice. The fluorescent retrograde tracer Fluoro-Gold was injected into 19 hindlimb muscles. Consecutive transverse spinal cord sections were harvested, the MNs counted, and the MN columns reconstructed in 3D. Three longitudinal MN columns were identified. The dorsolateral column extends from L4 to L6 and consists of MNs innervating the crural muscles and the foot. The ventrolateral column extends from L1 to L6 and accommodates MNs supplying the iliopsoas, gluteal, and quadriceps femoris muscles. The middle part of the ventral horn hosts the central MN column, which extends between L2–L6 and consists of MNs for the thigh adductor, hamstring, and quadratus femoris muscles. Within these longitudinal columns, the arrangement of the different MN groups reflects their somatotopic organization. MNs innervating muscles developing from the dorsal (e.g., quadriceps) and ventral muscle mass (e.g., hamstring) are situated in the lateral and medial part of the ventral gray, respectively.MN pools belonging to proximal muscles (e.g., quadratus femoris and iliopsoas) are situatedventral to those supplying more distal ones (e.g., plantar muscles). Finally, MNs innervatingflexors (e.g., posterior crural muscles) are more medial than those belonging to extensors ofthe same joint (e.g., anterior crural muscles). These data extend and modify the MN maps in the recently published atlas of the mouse spinal cord and may help when assessing neuronal loss associated with MN diseases

    The Scottish Early Rheumatoid Arthritis (SERA) Study:an inception cohort and biobank

    Get PDF
    Background: The Scottish Early Rheumatoid Arthritis (SERA) study is an inception cohort of rheumatoid (RA) and undifferentiated arthritis (UA) patients that aims to provide a contemporary description of phenotype and outcome and facilitate discovery of phenotypic and prognostic biomarkers Methods: Demographic and clinical outcome data are collected from newly diagnosed RA/UA patients every 6 months from around Scotland. Health service utilization data is acquired from Information Services Division, NHS National Services Scotland. Plain radiographs of hands and feet are collected at baseline and 12 months. Additional samples of whole blood, plasma, serum and filtered urine are collected at baseline, 6 and 12 months Results: Results are available for 1073 patients; at baseline, 76 % were classified as RA and 24 % as UA. Median time from onset to first review was 163 days (IQR97-323). Methotrexate was first-line DMARD for 75 % patients. Disease activity, functional ability and health-related quality of life improved significantly between baseline and 24 months, however the proportion in any employment fell (51 to 38 %, p = 0.0005). 24 % patients reported symptoms of anxiety and/or depression at baseline. 35/391 (9 %) patients exhibited rapid radiographic progression after 12 months. The SERA Biobank has accrued 60,612 samples Conclusions: In routine care, newly diagnosed RA/UA patients experience significant improvements in disease activity, functional ability and health-related quality of life but have high rates of psychiatric symptoms and declining employment rates. The co-existence of a multi-domain description of phenotype and a comprehensive biobank will facilitate multi-platform translational research to identify predictive markers of phenotype and prognosis

    Sex Reversal in Zebrafish fancl Mutants Is Caused by Tp53-Mediated Germ Cell Apoptosis

    Get PDF
    The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53) mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA–repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination
    corecore