1,184 research outputs found
Exobiology issues and experiments at a Mars base
Research in Exobiology, the study of the origin, evolution, and distribution of life in the universe, may be a major component of the science activities at a Mars Base. Exobiology activities would include: continuing the search for life on Mars; searching for evidence for ancient life from a warmer Martian past; research into the chemistry of the biogenic elements and their compounds; and other related activities. Mars provides an opportunity in Exobiology, both for immediate study and for long range and possibly large scale experimentation in planetary biology
Mars: A reassessment of its interest to biology
Of all the planets in the solar system, Mars is certainly the one that has inspired the most speculation concerning extraterrestrial life. Observers had long ago noticed that Mars exhibits changes in its polar caps and alterations in its surface coloration that parallel seasonal changes on Earth. The fascination with Mars and the possibility of life on Mars continued into the spacecraft era and was directly expressed in the Viking Missions. These highly successful missions had the search for life on Mars as one of their principal goals. A review of Viking Missions experiments is presented. Results of these investigations are summarized. While the Viking Missions returned a negative answer to the question of life on Mars, they also showed that many years ago Mars was a very different place and enjoyed conditions that may have been conducive to the origin of life - life that may have long since become extinct. Evidence for the existence of water on Mars in the past is presented. Techniques used to study early life on Earth, which may also be used for similar studies on Mars, are described
Exobiology and Future Mars Missions
Scientific questions associated with exobiology on Mars were considered and how these questions should be addressed on future Mars missions was determined. The mission that provided a focus for discussions was the Mars Rover/Sample Return Mission
A search for biogenic trace gases in the atmosphere of Mars
The detection of certain trace gases in the atmosphere of Mars may serve as a possible indicator of microbial life on the surface of Mars. Candidate biogenic gases include methane CH4, ammonia NH3, nitrous oxide N2O, and several reduced sulfur species. Chemical thermodynamic equilibrium and photochemical calculations preclude the presence of these gases in any measurable concentrations in the atmosphere of Mars in the absence of biogenic production. A search for these gases utilizing either high resolution (spectral and spatial) spectroscopy from a Mars orbiter, such as the Observer, and or in situ measurements from a Mars lander or rover, is proposed
Titan as the Abode of Life
Titan is the only world we know other than Earth that has a liquid on its surface. It has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan's atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in the atmosphere. It is conceivable that H2O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic - polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the Universe is full of diverse and wondrous life forms
Habitability in the Solar System and on Extrasolar Planets and Moons
The criteria for a habitable world initially was based on Earth and centered around liquid water on the surface, warmed by a Sun-like star. The moons of the outer Solar System, principally Europa and Enceladus, have demonstrated that liquid water can exist below the surface warmed by tidal forces from a giant planet. Titan demonstrates that surface liquids other than water - liquid methane/ethane - may be common on other worlds. Considering the numerous extrasolar planets so far discovered and the prospect of discovering extrasolar moons it is timely to reconsider the possibilities for habitability in the Solar System and on extrasolar planets and moons and enumerate the attributes and search methods for detecting habitable worlds and evidence of life
Microgravity Particle Research on the Space Station
Science questions that could be addressed by a Space Station Microgravity Particle Research Facility for studying small suspended particles were discussed. Characteristics of such a facility were determined. Disciplines covered include astrophysics and the solar nebula, planetary science, atmospheric science, exobiology and life science, and physics and chemistry
Oxygenic Photosynthesis and the Oxidation State of Mars
The oxidation state of the Earth's surface is one of the most obvious indications of the effect of life on this planet. The surface of Mars is highly oxidized, as evidenced by its red color, but the connection to life is less apparent. Two possibilities can be considered. First, the oxidant may be photochemically produced in the atmosphere. In this case the fundamental source of O2 is the loss of H2 to space and the oxidant produced is H2O2. This oxidant would accumulate on the surface and thereby destroy any organic material and other reductants to some depth. Recent models suggest that diffusion limits this depth to a few meters. An alternative source of oxygen is biological oxygen production followed by sequestration of organic material in sediments - as on the Earth. In this case, the net oxidation of the surface was determined billions of years ago when Mars was a more habitable planet and oxidative conditions could persist to great depths, over 100 m. Below this must be a compensating layer of biogenic organic material. Insight into the nature of past sources of oxidation on Mars will require searching for organics in the martian subsurface and sediments
Recommended from our members
Snow and ice melt flow features on Devon Island, Nunavut, Arctic Canada as possible analogs for recent slope flow features on Mars
Based on morphologic and contextual analogs from Devon Island, Arctic Canada, the recent martian slope flow features reported by Malin and Edgett are reinterpreted as being due not necessarily to groundwater seepage but possibly to snow or ice melt
Workshop on Mars Sample Return Science
Martian magnetic history; quarantine issues; surface modifying processes; climate and atmosphere; sampling sites and strategies; and life sciences were among the topics discussed
- …