18 research outputs found

    Very Shallow Water Bathymetry Retrieval from Hyperspectral Imagery at the Virginia Coast Reserve (VCR\u2707) Multi-Sensor Campaign

    Get PDF
    A number of institutions, including the Naval Research Laboratory (NRL), have developed look up tables for remote retrieval of bathymetry and in-water optical properties from hyperspectral imagery (HSI) [6]. For bathymetry retrieval, the lower limit is the very shallow water case (here defined as \u3c 2m), a depth zone which is not well resolved by many existing bathymetric LIDAR sensors, such as SHOALS [4]. The ability to rapidly model these shallow water depths from HSI directly has potential benefits for combined HSI/LIDAR systems such as the Compact Hydrographic Airborne Rapid Total Survey (CHARTS) [10]. In this study, we focused on the validation of a near infra-red feature, corresponding to a local minimum in absorption (and therefore a local peak in reflectance), which can be correlated directly to bathymetry with a high degree of confidence. Compared to other VNIR wavelengths, this particular near-IR feature corresponds to a peak in the correlation with depth in this very shallow water regime, and this is a spectral range where reflectance depends primarily on water depth (water absorption) and bottom type, with suspended constituents playing a secondary role

    Measurement of Angular Distributions and R= sigma_L/sigma_T in Diffractive Electroproduction of rho^0 Mesons

    Full text link
    Production and decay angular distributions were extracted from measurements of exclusive electroproduction of the rho^0(770) meson over a range in the virtual photon negative four-momentum squared 0.5< Q^2 <4 GeV^2 and the photon-nucleon invariant mass range 3.8< W <6.5 GeV. The experiment was performed with the HERMES spectrometer, using a longitudinally polarized positron beam and a ^3He gas target internal to the HERA e^{+-} storage ring. The event sample combines rho^0 mesons produced incoherently off individual nucleons and coherently off the nucleus as a whole. The distributions in one production angle and two angles describing the rho^0 -> pi+ pi- decay yielded measurements of eight elements of the spin-density matrix, including one that had not been measured before. The results are consistent with the dominance of helicity-conserving amplitudes and natural parity exchange. The improved precision achieved at 47 GeV, reveals evidence for an energy dependence in the ratio R of the longitudinal to transverse cross sections at constant Q^2.Comment: 15 pages, 15 embedded figures, LaTeX for SVJour(epj) document class Revision: Fig. 15 corrected, recent data added to Figs. 10,12,14,15; minor changes to tex

    Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron

    Full text link
    The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2] for the proton and neutron have been determined from measurements of polarised cross section asymmetries in deep inelastic scattering of 27.5 GeV longitudinally polarised positrons from polarised 1H and 3He internal gas targets. The data were collected in the region above the nucleon resonances in the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the proton the contribution to the generalised Gerasimov-Drell-Hearn integral was found to be substantial and must be included for an accurate determination of the full integral. Furthermore the data are consistent with a QCD next-to-leading order fit based on previous deep inelastic scattering data. Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte

    Observation of a Coherence Length Effect in Exclusive Rho^0 Electroproduction

    Get PDF
    Exclusive incoherent electroproduction of the rho^0(770) meson from 1H, 2H, 3He, and 14N targets has been studied by the HERMES experiment at squared four-momentum transfer Q**2>0.4 GeV**2 and positron energy loss nu from 9 to 20 GeV. The ratio of the 14N to 1H cross sections per nucleon, known as the nuclear transparency, was found to decrease with increasing coherence length of quark-antiquark fluctuations of the virtual photon. The data provide clear evidence of the interaction of the quark- antiquark fluctuations with the nuclear medium.Comment: RevTeX, 5 pages, 3 figure

    Machine Learning Methods for Multiscale Physics and Urban Engineering Problems

    No full text
    We present an overview of four challenging research areas in multiscale physics and engineering as well as four data science topics that may be developed for addressing these challenges. We focus on multiscale spatiotemporal problems in light of the importance of understanding the accompanying scientific processes and engineering ideas, where “multiscale” refers to concurrent, non-trivial and coupled models over scales separated by orders of magnitude in either space, time, energy, momenta, or any other relevant parameter. Specifically, we consider problems where the data may be obtained at various resolutions; analyzing such data and constructing coupled models led to open research questions in various applications of data science. Numeric studies are reported for one of the data science techniques discussed here for illustration, namely, on approximate Bayesian computations

    Bathymetry Retrieval from Hyperspectral Imagery in the Very Shallow Water Limit: a Case Study from the 2007 Virginia Coast Reserve (VCR\u2707) Multi-Sensor Campaign

    No full text
    We focus on the validation of a simplified approach to bathymetry retrieval from hyperspectral imagery (HSI) in the very shallow water limit (less than 1–2 m), where many existing bathymetric LIDAR sensors perform poorly. In this depth regime, near infra-red (NIR) reflectance depends primarily on water depth (water absorption) and bottom type, with suspended constituents playing a secondary role. Our processing framework exploits two optimal regions where a simple model depending on bottom type and water depth can be applied in the very shallow limit. These two optimal spectral regions are at a local maximum in the near infra-red reflectance near 810 nm, corresponding to a local minimum in absorption, and a maximum in the first derivative of the reflectance near 720 nm. These two regions correspond to peaks in spectral correlation with bathymetry at these depths

    Retrieval of Substrate Bearing Strength from Hyperspectral Imagery during the Virginia Coast Reserve (VCR\u2707) Multi-Sensor Campaign

    No full text
    Hyperspectral imagery (HSI) derived from remote sensing can delineate surface properties of substrates such as type, moisture, and grain size. These are critical parameters that determine the substrate bearing strength. Although HSI only sees the surface layer, statistics can be derived that relate surface properties to the likely bearing strength of soils in particular regions. This information can be used to provide an initial map estimate on large scales of potential bearing strength. We describe an initial validation study at the Virginia Coast Reserve relating airborne HSI to in situ spectral and geotechnical measurements through a spectral-geotechnical lookup table (LUT)
    corecore