15 research outputs found

    Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior

    Get PDF
    Increased tonic activity of locus coeruleus noradrenergic (LC-NE) neurons induces anxiety-like and aversive behavior. While some information is known about the afferent circuitry that endogenously drives this neural activity and behavior, the downstream receptors and anatomical projections that mediate these acute risk aversive behavioral states via the LC-NE system remain unresolved. Here we use a combination of retrograde tracing, fast-scan cyclic voltammetry, electrophysiology, and in vivo optogenetics with localized pharmacology to identify neural substrates downstream of increased tonic LC-NE activity in mice. We demonstrate that photostimulation of LC-NE fibers in the BLA evokes norepinephrine release in the basolateral amygdala (BLA), alters BLA neuronal activity, conditions aversion, and increases anxiety-like behavior. Additionally, we report that β-adrenergic receptors mediate the anxiety-like phenotype of increased NE release in the BLA. These studies begin to illustrate how the complex efferent system of the LC-NE system selectively mediates behavior through distinct receptor and projection-selective mechanisms

    Loss of UBE3A from TH-expressing neurons suppresses GABA co-release and enhances VTA-NAc optical self-stimulation

    Get PDF
    Motivated reward-seeking behaviours are governed by dopaminergic ventral tegmental area projections to the nucleus accumbens. In addition to dopamine, these mesoaccumbal terminals co-release other neurotransmitters including glutamate and GABA, whose roles in regulating motivated behaviours are currently being investigated. Here we demonstrate that loss of the E3-ubiquitin ligase, UBE3A, from tyrosine hydroxylase-expressing neurons impairs mesoaccumbal, non-canonical GABA co-release and enhances reward-seeking behaviour measured by optical self-stimulation

    Hormonal gain control of a medial preoptic area social reward circuit

    Get PDF
    Neural networks that control reproduction must integrate social and hormonal signals, tune motivation, and invigorate social interactions. However, the neurocircuit mechanisms for these processes remain unresolved. The medial preoptic area (mPOA), an essential node for social behaviors and is comprised of molecularly-diverse neurons with widespread projections. Here, we identify a steroid-responsive subset of neurotensin (Nts) expressing mPOA neurons that interface with the ventral tegmental area (VTA) to form a socially-engaged reward circuit. Using in vivo 2-photon imaging in female mice, we show that mPOANts neurons preferentially encode attractive male cues compared to non-social appetitive stimuli. Ovarian hormone signals regulate both the physiological and cue encoding properties of these cells. Furthermore, optogenetic stimulation of mPOANts-VTA circuitry promotes rewarding phenotypes, social approach, and striatal dopamine release. Collectively, these data demonstrate that steroid-sensitive mPOA neurons encode ethologically-relevant stimuli and co-opt midbrain reward circuits to promote prosocial behavior critical for species survival

    Mu Opioid Receptor Modulation of Dopamine Neurons in the Periaqueductal Gray/Dorsal Raphe: A Role in Regulation of Pain

    Get PDF
    The periaqueductal gray (PAG) is a brain region involved in nociception modulation, and an important relay center for the descending nociceptive pathway through the rostral ventral lateral medulla. Given the dense expression of mu opioid receptors and the role of dopamine in pain, the recently characterized dopamine neurons in the ventral PAG (vPAG)/dorsal raphe (DR) region are a potentially critical site for the antinociceptive actions of opioids. The objectives of this study were to (1) evaluate synaptic modulation of the vPAG/DR dopamine neurons by mu opioid receptors and to (2) dissect the anatomy and neurochemistry of these neurons, in order to assess the downstream loci and functions of their activation. Using a mouse line that expresses eGFP under control of the tyrosine hydroxylase (TH) promoter, we found that mu opioid receptor activation led to a decrease in inhibitory inputs onto the vPAG/DR dopamine neurons. Furthermore, combining immunohistochemistry, optogenetics, electrophysiology, and fast-scan cyclic voltammetry in a TH-cre mouse line, we demonstrated that these neurons also express the vesicular glutamate type 2 transporter and co-release dopamine and glutamate in a major downstream projection structure—the bed nucleus of the stria terminalis. Finally, activation of TH-positive neurons in the vPAG/DR using Gq designer receptors exclusively activated by designer drugs displayed a supraspinal, but not spinal, antinociceptive effect. These results indicate that vPAG/DR dopamine neurons likely play a key role in opiate antinociception, potentially via the activation of downstream structures through dopamine and glutamate release

    Amygdala and bed nucleus of the stria terminalis circuitry: Implications for addiction-related behaviors

    Get PDF
    Complex motivated behavioral processes, such as those that can go awry following substance abuse and other neuropsychiatric disorders, are mediated by a distributive network of neurons that reside throughout the brain. Neural circuits within the amygdala regions, such as the basolateral amygdala (BLA), and downstream targets such as the bed nucleus of the stria terminalis (BNST), are critical neuroanatomical structures for orchestrating emotional behavioral responses that may influence motivated actions such as the reinstatement of drug seeking behavior. Here, we review the functional neurocircuitry of the BLA and the BNST, and discuss how these circuits may guide maladaptive behavioral processes such as those seen in addiction. Thus, further study of the functional connectivity within these brain regions and others may provide insight for the development of new treatment strategies for substance use disorders

    Neuropeptide Regulation of Signaling and Behavior in the BNST

    Get PDF
    Recent technical developments have transformed how neuroscientists can probe brain function. What was once thought to be difficult and perhaps impossible, stimulating a single set of long range inputs among many, is now relatively straight-forward using optogenetic approaches. This has provided an avalanche of data demonstrating causal roles for circuits in a variety of behaviors. However, despite the critical role that neuropeptide signaling plays in the regulation of behavior and physiology of the brain, there have been remarkably few studies demonstrating how peptide release is causally linked to behaviors. This is likely due to both the different time scale by which peptides act on and the modulatory nature of their actions. For example, while glutamate release can effectively transmit information between synapses in milliseconds, peptide release is potentially slower [See the excellent review by Van Den Pol on the time scales and mechanisms of release (van den Pol, 2012)] and it can only tune the existing signals via modulation. And while there have been some studies exploring mechanisms of release, it is still not as clearly known what is required for efficient peptide release. Furthermore, this analysis could be complicated by the fact that there are multiple peptides released, some of which may act in contrast. Despite these limitations, there are a number of groups making progress in this area. The goal of this review is to explore the role of peptide signaling in one specific structure, the bed nucleus of the stria terminalis, that has proven to be a fertile ground for peptide action

    Recombinase-Dependent Mouse Lines for Chemogenetic Activation of Genetically Defined Cell Types

    Get PDF
    Chemogenetic technologies, including the mutated human Gq-coupled M3 muscarinic receptor (hM3Dq), have greatly facilitated our ability to directly link changes in cellular activity to altered physiology and behavior. Here, we extend the hM3Dq toolkit with recombinase-responsive mouse lines that permit hM3Dq expression in virtually any cell type. These alleles encode a fusion protein designed to increase effective expression levels by concentrating hM3Dq to the cell body and dendrites. To illustrate their broad utility, we targeted three different genetically defined cell populations: noradrenergic neurons of the compact, bilateral locus coeruleus and two dispersed populations, Camk2a+ neurons and GFAP+ glia. In all three populations, we observed reproducible expression and confirmed that activation of hM3Dq is sufficient to dose-dependently evoke phenotypic changes, without extreme phenotypes associated with hM3Dq overexpression. These alleles offer the ability to non-invasively control activity of diverse cell types to uncover their function and dysfunction at any developmental stage

    Reducing the harms of xylazine: clinical approaches, research deficits, and public health context

    No full text
    Abstract Objectives Xylazine has emerged as a consistent part of the unregulated drug supply in recent months. We discuss major domains of xylazine’s harm, current knowledge deficits, clinical and harm reduction strategies for minimizing harm, and xylazine’s public health and policy context. As an interdisciplinary team from across the USA, we have pooled our knowledge to provide an overview of xylazine’s current and emerging contexts. Methods To inform this essay, the pertinent literature was reviewed, clinical knowledge and protocols were shared by multiple clinicians with direct expertise, and policy and public health context were added by expert authors. Results We describe xylazine’s major harm domains—acute poisoning, extended sedation, and wounds, along with anemia and hyperglycemia, which have been reported anecdotally but lack as clear of a connection to xylazine. Current successful practices for xylazine wound care are detailed. Understanding xylazine’s epidemiology will also require greater investment in drug checking and surveillance. Finally, approaches to community-based wound care are discussed, along with an orientation to the larger policy and public health context. Conclusions Addressing the harms of xylazine requires interdisciplinary participation, investment in community-based harm reduction strategies, and improved drug supply surveillance. The relatively unique context of xylazine demands buy-in from public health professionals, harm reduction professionals, clinicians, basic science researchers, policymakers and more
    corecore