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Recent technical developments have transformed how neu-
roscientists can probe brain function. What was once 
thought to be difficult and perhaps impossible, stimulating a 
single set of long range inputs among many, is now relative-
ly straight-forward using optogenetic approaches. This has 
provided an avalanche of data demonstrating causal roles 
for circuits in a variety of behaviors. However, despite the 
critical role that neuropeptide signaling plays in the regula-
tion of behavior and physiology of the brain, there have 
been remarkably few studies demonstrating how peptide 
release is causally linked to behaviors. This is likely due to 
both the different time scale by which peptides act on and 
the modulatory nature of their actions. For example, while 
glutamate release can effectively transmit information be-
tween synapses in milliseconds, peptide release is poten-
tially slower [See the excellent review by Van Den Pol on the 
time scales and mechanisms of release (van den Pol, 2012)] 
and it can only tune the existing signals via modulation. And 
while there have been some studies exploring mechanisms 
of release, it is still not as clearly known what is required for 
efficient peptide release. Furthermore, this analysis could be 
complicated by the fact that there are multiple peptides re-
leased, some of which may act in contrast. Despite these 
limitations, there are a number of groups making progress 
in this area. The goal of this review is to explore the role of 
peptide signaling in one specific structure, the bed nucleus 
of the stria terminalis, that has proven to be a fertile ground 
for peptide action. 
 
 
THE BED NUCLEUS OF THE STRIA TERMINALIS (BNST) 
1 
The bed nucleus of the stria terminalis (BNST) is a limbic struc-
ture in the brain situated medial to the striatum and later to the 
septum. Because of its rich connectivity (discussed below) its 
role in regulation of behavior has been extensively studied. 
Broadly, this region has been shown to play a role in stress or 
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aversion related behaviors, however there is also evidence that 
it can regulate appetitive responses. Numerous pharmacologi-
cal studies targeting different peptide systems as well as 
monoaminergic systems have found that the BNST plays a key 
role in anxiety. For example, the Davis group has found that 
CRF in the BNST can potently enhance anxiety (Walker et al., 
2009b) and the Hammack group has found that PACAP signal-
ing can alter stress responses (Kocho-Schellenberg et al., 
2014; Lezak et al., 2014a; 2014b). In support of this, recent 
findings from several groups using optogenetic approaches 
have shown the BNST plays a role in anxiety (Jennings et al., 
2013a; Kim et al., 2013), however these manuscripts also 
found that there were potent anxiolytic pathways in the BNST. 
This highlights one of the major positive aspects of optogenetic 
approaches, the ability to probe genetically and anatomically 
defined circuits allows a glimpse in to processes that may play 
subtle roles in regulation of behavior. 

In addition to anxiety, several reports have suggested that 
the BNST is involved fear learning. A study by Sullivan et al., 
found that lesions of the BNST can alter contextual fear condi-
tioning, but not cued fear conditioning (Sullivan et al., 2004). 
This is not inconsistent with the data from the Davis group 
demonstrating that inactivation of the BNST can alter the fear 
response to a long duration (8 min) cue, suggesting that the 
BNST plays a role in responding to more diffuse stimuli (Davis 
and Shi, 1999; Davis and Walker, 2013, Davis et al., 1997a; 
1997b; Gewirtz et al., 1998; Walker and Davis 1997; Walker et 
al., 2009a). Interesting, a recent paper from Duvarci et al., 
found that lesioning the BNST could alter fear generalization in 
a fashion that suggests the BNST is involved in safety learning 
(Duvarci et al., 2009). This appears to contrast with the previ-
ous BNST fear learning data, however, it is important to note 
that the Duvarci paper used the Lewis rat strain. This particular 
strain exhibits altered HPA function and noradrenergic function 
in the BNST, so it is possible that these results are due to aber-
rant plasticity (McElligott et al., 2013). Interestingly, there have 
been several recent papers demonstrating that acute fluoxetine 
can increase cue-induced fear recall via its actions in the BNST 
(Burghardt and Bauer, 2013; Ravinder et al., 2013). This raises 
an intriguing possibility that during ‘basal’ states, the BNST 
plays no role in cued fear learning, however during states of 
altered biogenic amine levels, it then turns ‘online’ and plays a 
role in cued fear learning. 

The BNST is a site of integration of stress and reward infor-
mation and may mediate the negative affective state associated 
with chronic alcohol/drug use. The BNST mediates stress-  
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induced relapse to drug seeking (Erb et al., 2001). While less is 
known about the role of the BNST specifically in self-
administration of abused drugs, there have been several stud-
ies demonstrating that pharmacological manipulations in the 
BNST can alter alcohol drinking (Eiler et al., 2003) and cocaine 
self administration behaviors (Epping-Jordan et al., 1998). Addi-
tionally, there is a body of evidence suggesting that BNST neu-
ronal function is altered by exposure to drugs of abuse. In par-
ticular, several studies have found that chronic alcohol expo-
sure and withdrawal alters the function and glutamatergic plas-
ticity of BNST neurons (Kash et al., 2009; Wills et al., 2012). 
The BNST has also been implicated in feeding related behav-
iors (Betley et al., 2013; Jennings et al., 2013b). This is not 
surprising, as stress and anxiety can exert powerful effects on 
feeding behaviors. Briefly, as these particular ideas will be dis-
cussed below in the sections of individual peptides, the BNST 
has been shown to play potent roles in both the inhibition and 
stimulation of feeding related behaviors. 

Tracing studies have shown that the BNST receives cortical in-
puts from the infralimbic and prelimbic regions of the prefrontal 
cortex (Chiba et al., 2001; Hurley et al., 1991; Takagishi and 
Chiba 1991; Vertes, 2004) that may be important for fear re-
sponses. The infralimbic and prelimbic prefrontal cortices are 
involved in both the expression and extinction of fear and drug 
seeking behaviors (Gass et al., 2014) perhaps through via re-
cruitment of the BNST (Bruchas et al., 2009). Thalamic inputs 
from the paraventricular nucleus may also govern fear behavior 
(Li et al., 2014) in addition to aspects of addiction (Browning et al., 
2014; Matzeu et al., 2014) and stress responses (Heydendael et 
al., 2011). Biogenic amine inputs to the BNST originate from 
discrete cell populations. Noradrenergic inputs to the BNST 
arising from the nucleus of the solitary tract, ventrolateral me-
dulla, locus coeruleus and parabrachial nucleus (Myers et al., 
2005) may modulate behaviors related to addiction, stress and 
mood (Flavin and Winder, 2013, McElligott et al., 2013; 
McReynolds et al., 2014; Nagai et al., 2013; Wenzel et al., 
2014). Serotonin inputs from the dorsal raphe nucleus (Peyron 
et al., 1998, Shin et al., 2008) and dopaminergic inputs from the 
ventral periaqueductal gray and ventral tegmental areas 
(Hasue and Shammah-Lagnado, 2002; Herr et al., 2012) likely 
modulate similar behaviors. In turn, the BNST orchestrates 
complex behavioral responses related to addiction, mood and 
stress via outputs to the hypothalamus, amygdala, nucleus 
accumbens, dorasl raphe and ventral tegmental area (Choi et 
al., 2007; Dong et al., 2001a; 2001b). With the advent of new 
technologies allowing pathway-specific modulation of neuronal 
function, the contribution of specific BNST projections to behav-
ioral responses can be evaluated. For example, recent investi-
gations using in vivo optogenetics demonstrate that BNST out-
puts to the lateral hypothalamus, parabrachial nucleus and 
ventral tegmental area govern distinct aspects of anxiety and 
motivational responses (Jennings et al., 2013a; Kim et al., 
2013). Importantly, beyond the anatomical framework for how 
the BNST functions, there is a neurochemical heterogeneity 
that plays a major role in regulation of behavior. In terms of 
classical neurotransmistters, while the majority of neurons are 
GABAergic, expressing the vesicular GABA transporter (vGAT), 
there is also a small subpopulation of glutamate neurons ex-
pression the vesicular glutamate tranporter 2 (vGlut2). Finally, 
there is a small subpopulation of neurons that expresses vGlut3, 
however these appear to be GABAergic as well. In addition to 
these different neurotransmitter releasing populations of neu-
rons, there is a tremendous amount of diversity of peptides 
expressed in the BNST. This includes, but is not limited to the 

peptides that are discussed below. It is tempting to speculate 
that these diverse populations of neurons are engaged and 
encode different signals that allow for fine-tuning of behavior. 
 
CORTICOTROPIN RELEASING FACTOR (CRF) 
 
Corticotropin releasing factor (CRF) belongs to a family of neuro-
peptides that includes CRF, urotensis-1, urocortin, and sauvagine 
(Lovejoy and Balment, 1999). CRF is a 41-amino-acid peptide that 
is predominantly expressed in the paraventricular nucleus of the 
hypothalamus (PVN), where it acts as a hormone that triggers a 
neuroendocrine response to stress which ultimately releases 
glucocorticoids into circulation. However, extrahypothalamic 
sites of CRF action can be found in the extended amygdala, 
including the BNST, where it acts as a peptide neurotransmitter 
that can robustly shape circuit function and behavior (Huang et 
al., 2010; Kash and Winder, 2006; Silberman et al., 2013). 
Within the BNST, CRF neurons are clustered in the dorsolateral 
and ventrolateral aspects (Phelix et al., 1992; Silberman et al., 
2013), with a high concentration found in the oval and fusiform 
nuclei (Cummings et al., 1983; Morin et al., 1999). Dense CRF 
terminals are also found in the oval nucleus of the BNST, which 
may originate from local CRF neurons in the BNST or from 
CRF neurons projecting from the CeA (Cummings et al., 1983; 
Morin et al., 1999; Sakanaka et al., 1986). 

CRF neurons in the BNST colocalize with serotonin (5HT) ter-
minals, suggesting that inputs from the dorsal raphe nucleus 
(DRN) may interact with CRF neurons in the BNST (Phelix et al., 
1992). Previous work in 5HT2c-R knockout mice also suggests 
that CRF neurons in the BNST express 5HT2c receptors 
(5HT2c-Rs), which have excitatory post-synaptic effects (Guo et 
al., 2009). This raises the possibility that the well-documented 
anxiety-provoking aspects of 5HT2c-R signaling may be at least 
partially mediated by its actions in this specific cell population. 
Interestingly, dopamine and norepinephrine (NE) also depolarize 
CRF neurons in the BNST (Silberman et al., 2013), suggesting a 
common pathway for biogenic amine signaling in the BNST. The-
se direct actions of norepinephrine and dopamine on CRF neu-
rons suggest that projections from the noradrenergic projections 
from the locus coeruleus (LC) and dopaminergic projections from 
the periaquaductal grey (PAG) (Hasue and Shammah-Lagnado, 
2002; Meloni et al., 2006) synapse directly on CRF neurons in 
the BNST. 
  A substantial body of evidence supports the role of CRF sig-
naling in the BNST in general anxiety (Gafford et al., 2012; 
Sahuque et al., 2006; Sink et al., 2013), social anxiety (Lee et 
al., 2008), acoustic startle responses (Sink et al., 2013; Walker 
et al., 2009b) anxiety generated by stress (Heisler et al., 2007; 
Tran et al., 2014) retention of emotional memory (Liang et al., 
2001) and anxiety during withdrawal from drugs of abuse 
(Huang et al., 2010; Overstreet et al., 2003). The direction of 
these responses is receptor type dependent, as CRF1-R and 
CRF2-Rs in the BNST exert opposing roles on stress-induced 
anxiety, neuroendocrine response, and pain threshold, with 
CRF1-Rs augmenting these responses and CRF2-Rs inhibiting 
them (Tran et al., 2014). The oval nucleus, a rich source of 
CRF neurons and terminals, may be a critical site of action for 
these behavioral effects. In an elegant study by Deisseroth and 
colleagues, selective activation of the oval nucleus was shown 
to generate anxiety-like behavior (Kim et al., 2013), which may 
be mediated by CRF neurons or terminals within this region. 
However, a recent study also identified the anterolateral portion 
of the BNST as an important locus for CRF1R signaling in 
stress-induced anxiety (Tran et al., 2014), indicating that CRF 
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may have a more ubiquitous role in generating anxiety within 
the BNST.  

Anxiety precipitated by drug withdrawal was recently pro-
posed as a significant motivating factor in stress-induced rein-
statement of drug-seeking behavior, with CRF1R signaling in 
the BNST providing a key link (Erb, 2010; Erb and Stewart 
1999). The BNST is ideally position to integrate stress and 
reinforced behavior given its reciprocal connections with the 
extended amygdala and mesocorticolimbic systems that pro-
cess reward, particularly the ventral tegmental area (VTA) 
(Aston-Jones and Harris, 2004). In fact, a recent study has 
shown that acute withdrawal from chronic intermittent ethanol 
(CIE), which provokes a robust anxiety phenotype in rodents 
(Lowery-Gionta et al., 2014; Overstreet et al., 2003), also en-
hances excitatory transmission on VTA projecting neurons in a 
CRF1-R dependent fashion (Silberman et al., 2013). This 
BNST-to-VTA pathway has been implicated in both anxiety and 
motivated behavior (Jennings et al., 2013a), suggesting a po-
tential mechanism of action for CRF in both drug-related anxie-
ty and reinstatement. Although Erb and colleagues argue that 
the CRF projections from the CeA are primary source of CRF in 
these behaviors (Erb et al., 2001), emerging evidence indicates 
that local CRF neurons in the BNST may play a critical role. 
Stress activates neurons in the LC that release NE, which was 
recently shown to depolarize CRF neurons in the BNST 
(Silberman et al., 2013). In a recent study, β2-adrenergic recep-
tors (β2-AR) antagonists blocked stress-induced reinstatement 
to cocaine-conditioned reward and stress-induced increases in 
CRF mRNA in the BNST but not the CeA (McReynolds et al., 
2014). Taken together, these data indicate that NE acting at 
CRF neurons in the BNST induces reinstatement behaviors.  

Stress-induced inhibition of feeding behavior was traditionally 
thought to be mediated by hypothalamic CRF (Carr, 2002), but 
evidence for an extrahypothalamic role of CRF has also begun 
to emerge (Ciccocioppo et al., 2003a; 2004). In a recent study, 
it was found that GABAergic projections from the BNST to LH 
hypothalamus robustly enhance feeding (Jennings et al., 2013b), 
raising the possibility that CRF may exert its anorexic effects by 
inhibiting this projection. This CRF-mediated suppression of feed-
ing appears to mediated by CRF-2Rs (Ohata and Shibasaki, 
2011), suggesting that CRF2R may enhance GABAergic drive 
onto LH projecting neurons in the BNST in a manner similar to 
the laterocapsular division of the CeA (Fu and Neugebauer, 
2008). Conversely, binge eating induced by frustration stress in 
female rats (e.g. the sight of palatable food before allowing ac-
cess), was attenuated by CRF1-R antagonists infused in the 
BNST (Micioni Di Bonaventura et al., 2014), suggesting that 
stress-induced hyperphagia, but not hypophagia, is mediated by 
CRF1-R signaling.  
 
Cellular effects 
CRF binds to CRF-1 and CRF-2 receptors (CRF-1Rs and 
CRF-2Rs), which are G-protein coupled receptors (GPCRs) 
acting through a Gs-cAMP-PKA signaling mechanism (Arzt and 
Holsboer, 2006; Blank et al., 2003; Dautenberg and Hauger, 
2002; Reul and Holsboer, 2002). Despite their common signal 
transduction mechanisms, CRF1- and CRF-2Rs appear to 
have opposing actions on stress responsiveness, pain percep-
tion. startle response, and anxiety (Fu and Neugebauer, 2008; 
Takahashi, 2001; Tran et al., 2014). In the laterocapsular divi-
sion of the CeA, CRF1-Rs increase excitability in a postsynaptic 
fashion, while CRF2-Rs act presynaptically to increase GABA 
release. However, the cellular actions of CRF in the BNST ap-
pear to be a bit more convoluted. CRF1-R signaling in the BNST 

enhances glutamatergic drive on neurons projecting to the VTA in 
a presynaptic fashion (Silberman et al., 2013) while enhancing 
GABAergic transmission in a postsynaptic manner (Kash and 
Winder, 2006). Given that CRF neurons in the BNST are 
GABAergic (Dabrowska et al., 2013), CRF released from the 
same neuron may enhance responses to GABA via postsynaptic 
CRF1Rs. On the other hand, glutamatergic terminals likely ex-
press presynaptic CRF1Rs that enhance glutamate release. 
Taken together, these data suggest that CRF can enhance both 
inhibitory and excitatory transmission in the BNST, albeit through 
distinct signaling mechanisms. The behavioral outcomes of this 
are unclear, although if CRF1-R signaling in the BNST is strictly 
anxiogenic, then we might expect CRF to increase GABAergic 
transmission in anxiolytic circuits and glutamatergic transmission 
in anxiogenic circuits. 

Early life stress or repeated, uncontrollable stress has been 
associated with a myriad of neuropsychiatric conditions ranging 
from post-traumatic stress disorder (PTSD), general anxiety 
disorder (GAD), social anxiety disorder (SAD) and Major De-
pression (MD). For this reason, stress is often used to recapitu-
late the neuroendocrine and physiological events that lead to 
the behavioral disturbances characteristic of these disorders in 
animal models of psychiatric disease. Social defeat stress, 
which induces both anhedonia and learned helplessness that 
are the hallmarks of depression (Hollis et al., 2011; Rygula et 
al., 2005; 2006) as well as anxiety-like behavior (Kinsey et al., 
2007; Patki et al., 2014), has also been shown to increase CRF 
mRNA in the BNST (Funk et al., 2006b). Likewise, novel envi-
ronment stress activates CRF neurons in the BNST (Heisler et 
al., 2007), which were previously implicated in local, CRF1-R 
dependent modulation of anxiety circuity. 

CRF2-R signalingin the BNST, previously shown to have im-
portant implications for feeding behavior, have been recently 
implicated in the pathophysiology of PTSD (Elharrar et al., 
2013; Lebow et al., 2012). In a recent study, exposure to trau-
ma-related cues provoked elevations in CRF1R expression 
coupled with persistent downregulation of CRF2-Rs in rats 
susceptible to PTSD-like behavior, which was rescued by over-
expression of CRF2-Rs in the medial posterointermediate 
BNST (Elharrar et al., 2013). In a mouse model of PTSD involv-
ing repeated exposure to a traumatic series of shocks, mice 
exhibiting a PTSD-like phenotype had long-lasting upregulation 
of CRFR-2 mRNA in the BNST, while genetic knockdown of 
CRF2-R in the posterior medial BNST was protective against 
the development of PTSD-like characteristics (Lebow et al., 
2012). These data corroborate the bidirectionality of CRF1-R 
and CRF2-R responses seen in models of anxiety and pain 
perception (Tran et al., 2014). 

The core features of addiction recapitulated in animal models 
of drug dependence typically include anxiety, reinforcement, 
and dysphoria. During withdrawal from chronic intermittent 
ethanol (CIE), which elicits anxiety (Lowery-Gionta et al., 2014; 
Overstreet et al., 2003) and enhanced ethanol seeking behav-
ior (Lopez et al., 2012), CRF peptide levels were elevated in the 
BNST and normalized by subsequent ethanol intake (Olive et 
al., 2002). Furthermore, direct infusion of CRF1-R antagonists 
into the BNST alleviates anxiety associated with CIE withdrawal 
in rats (Huang et al., 2010). Together, these data indicate that 
ethanol-induced reductions in CRF signaling in the BNST fol-
lowing CIE may alleviate anxiety and lead to escalated drinking 
behavior, a hallmark of ethanol dependence. However, this 
view is confounded by the fact that CRF1-R antagonists infused 
in the CeA, but not the BNST, block enhanced ethanol self-
administration in ethanol-withdrawn rats (Funk et al., 2006a). 



Peptide Regulation in the BNST 
Thomas L. Kash et al. 
 
 

4  Mol. Cells http://molcells.org 

 

 

Thus, although CRF actions in the BNST are principally in-
volved in the anxiety-provoking aspects of ethanol withdrawal, 
the transition to dependence marked by enhanced ethanol 
seeking behavior may involves a complex interplay between 
CRF systems in the BNST and CeA that involve direct or indi-
rect crosstalk between the two. The juxtacapsular BNST 
(jcBNST), a region that sends inhibitory projections to the CeA, 
shows marked reductions in excitability after protracted with-
drawal from CIE (Szücs et al., 2012). Similarly, protracted with-
drawal from an ethanol self-administration regimen that leads to 
escalated responding after reintroduction of ethanol impairs the 
long-term potentiation of intrinsic excitability (LTP-IE) in the 
jcBNST (Francesconi et al., 2009). CRF1-R antagonists nor-
malized this response, while repeated administration of CRF 
mimicked the effect of protracted withdrawal on LTP-IE in the 
jcBNST. Thus, CRF actions in the jcBNST may in effect disin-
hibit the CeA, leading to long-term adaptation in ethanol sensi-
tivity and patterns of ethanol consumption. Further modulation 
by CRF at the level of the CeA may also play a role in these 
behaviors. The adaptations in CRF signaling in the BNST ob-
served in models of ethanol dependence also general to other 
drugs of abuse, including cocaine (Erb and Stewart, 1999; 
McReynolds et al., 2014; Nader et al., 2011; 2012) and mor-
phine (García-Carmona et al., 2013; Wang et al., 2006). 
 
DYNORPHIN  
 
Dynorphin, a member of the opioid peptide family, is thought to 
mediate dysphoria and may be a key component of stress and 
drug withdrawal (Koob and Le Moal, 2008). Though dynorphin 
and its endogenous receptor, the kappa opioid receptor (KOR) 
are known to exist in the BNST (Li et al., 2012), little work has 
been done assessing this crucial peptide. While the precise 
projection pattern and innervation of these neurons in the 
BNST has not been demonstrated, some molecular and ana-
tomical work has been done, providing a potential clue to their 
function. Dynorphin-A (Poulin et al., 2009) and Dynorphin-B 
(Fallon and Leslie, 1986) are expressed throughout the anteri-
or-posterior regions of the BNST, with dense concentrations of 
Dynorphin-A in the oval nucleus. Interestingly, dynorphin and 
substance P may be co-localized in some of these neurons in 
some species (Neal et al., 1989). In addition to local dynorphin 
neurons, GABAergic neurons co-expressing dynorphin in the 
central amygdala (CeA) send a projection to the BNST 
(Marchant et al., 2007). KOR activation inhibits GABA trans-
mission from the CeA (Li et al., 2012). There is therefore a 
potential for multiple sources of dynorphin in the BNST, and 
complex interactions between these neurons. 

Some work has been done addressing the potential role of 
dynorphin in the BNST and stress. proDynorphin mRNA in-
creased following forced swim (Chung et al., 2014). Metabolic 
activation in the BNST is evident after administration of the 
KOR agonist Salvinorin-A (Hooker et al., 2009). The dynorphin 
and CRF systems have long been though to mediate stress 
and anxiety (Bruchas et al., 2009); specifically, the Chavkin lab 
has hypothesized some of CRF’s key actions may be through 
the KOR system, though this interaction has not been demon-
strated in the BNST. 

In addition, recent literature has focused on sex differences 
and the KOR system. Females displayed conditioned place 
aversion at a low (2.5 mg/kg) dose of a KOR agonist, U-50488, 
while males displayed CPA at a higher (10 mg/kg) dose (in 
addition, the higher dose decreased social interaction in both 
sexes) (Robles et al., 2014). Interestingly, the larger dose also 

increased the number of pERK neurons in the ventral BNST, a 
sub-region of the BNST associated with aggressive behavior. 
Another study by the Chartoff lab (Russell et al., 2014) demon-
strated that female mice are less-sensitive to the reward-
decreasing effects of U-50488 in a intracranial self-stimulation 
(ICSS) paradigm. In addition, though U-50488 induced in C-
Fos positive cells in both males and females, the increase in 
females was dependent on estrus cycle (interestingly, the C-
Fos positive neurons appeared to be CRF negative, further 
highlighting the potential interaction between the dynorphin-
CRF systems). 
 
NPY 
 
Neuropeptide Y (NPY) is a 36-amino acid protein with five 
known receptors (Y1R-Y5R) located throughout the central and 
peripheral nervous system. Central signaling of the endoge-
nous “anti-stress” NPY system is recruited acutely to help main-
tain or reachieve homeostasis in the presence of stressors (e.g., 
Heilig et al., 1994). NPY also protects organisms from the 
negative behavioral consequences of chronic exposure to 
stressors, including anxiety, depression, and compulsive re-
ward, drug, and alcohol-seeking behavior (Cippitelli et al., 2010; 
Heilig, 2004; Heilig and Thorsell, 2002; Pandey et al., 2003). 

NPY mRNA and protein have been identified in the BNST of 
many species. Specifically, a number of immunohistochemical 
studies have characterized a moderate level of cell body expres-
sion of NPY and dense expression of NPY in fibers in the BNST 
of rodents including laboratory rats and mice (Allen et al., 1983; 
Chronwall et al., 1985; O’Donohue et al., 1985; Pleil et al., 
2012; Shen 1987), hamsters (Botchkina and Morin, 1995; 
Burroughs et al., 1996; Reuss and Olcese, 1995), and ground 
squirrels (Reuss et al., 1990, Smith et al., 1985), as well as 
avian species (Kuenzel and McMurtry, 1988), sheep (Pompolo 
et al., 2005), and human and non-human primates (Adrian et al., 
1983; Beal et al., 1987; Gaspar et al., 1987; Walter et al., 1991). 
Dense NPY expression in the BNST and co-expression with 
markers for the inhibitory neurotransmitter GABA (Pompolo et al., 
2005) are rather conserved phenomena across species, indicat-
ing its potential importance in the regulation of conserved, basic 
animal behaviors. However, co-expression of NPY with other 
peptides and molecules varies; for example, NPY neurons in the 
BNST densely co-express somatostatin in rodents (McDonald, 
1989) but do so to a much lesser degree in humans (Gaspar et 
al., 1987) and non-human primates (Beal et al., 1987). Neurons 
within the BNST that synthesize NPY have also been shown to 
project to downstream targets including those in the hypothala-
mus, such as the preoptic area (Pompolo et al., 2005). 

The high density of NPY-positive fibers in the BNST is likely  
due to a combination of axons from NPY interneurons within  
the BNST, as well as projections from other brain regions rich  
with NPY neurons. The most dense NPY input to the BNST  
that has been identified is that from agouti-related protein  
(AgRP) neurons in the arcuate nucleus of the hypothalamus  
(ARC), which co-release NPY (Betley et al., 2013; Nilsson et al., 
2005). Interestingly, the density of NPY-containing neurons in  
the BNST increases across development and adolescence to  
reach its peak by early adulthood (Carty et al., 2010), and  
AgRP density in the ARC follows a similar timeline (Nilsson et 
al., 2005), together suggesting that NPY function in the BNST  
is fully mature by this time. In addition, several NPY receptors 
known to mediate the functional behavioral properties of NPY 
are densely expressed in the BNST, including Y1R, Y2R, and 
Y5R (Dumont et al., 1996; Kash and Winder 2006; Pleil et al., 
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2012; Sparrow et al., 2012; Weinberg et al., 1996), further im-
plicating NPY signaling within the BNST as a potentially rele-
vant mechanism for the regulation of emotional and reward-
seeking behaviors. 

Very few studies have examined the behavior and functional 
modulatory roles of NPY in the BNST. One study showed that 
NPY and CRF have opposing functional modulatory roles on 
inhibitory transmission in the BNST, with NPY inhibiting GABA 
transmission via presynaptic Y2Rs (Kash and Winder, 2006). 
Further examination showed that chronic restraint stress in-
creases NPY and Y2R expression in the BNST and reduces 
the Y2R-mediated effect of NPY on inhibitory synaptic trans-
mission in a stress-susceptible mouse strain (DBA/2J), but not 
a stress-resilient strain (C57BL/6J) (Pleil et al., 2012). In addi-
tion to these studies, several studies have examined the impact 
of behavioral or systemic/central pharmacological challenges 
on NPY expression in the BNST, implicating the involvement of 
NPY signaling in the BNST involvement in stress responsivity, 
drug/reward seeking behaviors, pain, and neurodegenerative 
diseases. For example, behavioral flexibility in a stress coping 
response to chronic variable stressors has been associated 
with increased NPY expression in the BNST (Hawley et al., 
2010). Another study showed that intracerebroventricular (i.c.v.) 
administration of the peptide fragment cholecystokinin-4 (CCK-
4) produced anxiety-like and depressive-like behavior and a 
decrease in NPY expression in the BNST; behavioral effects of 
CCK-4 could be attenuated by NPY via Y1R, suggesting a role 
for BNST NPY via Y1R in anxiety and depression (Desai et al., 
2014). Interestingly, another group has shown that binding of 
presynaptic Y2R in the BNST is correlated with anxiety-like and 
depressive-like behavior induced by Y2R deletion from 
GABAergic inputs from the CeA (Tasan et al., 2010), suggest-
ing another potential receptor-mediated synaptic mechanism 
for NPY signaling in the BNST in anxiety and depressive be-
haviors. NPY binding to Y2R in the BNST has also been shown 
to play a role in the attenuation of pain-induced conditioned 
place aversion, potentially via direct functional antagonism of 
CRF on excitability of Type II BNST neurons (Ide et al., 2013). 

NPY signaling in the BNST has also been indicated in feed-
ing behavior, as positive modulation of AgRP/NPY projections 
from the ARC to the BNST stimulates feeding behavior (Betley 
et al., 2013), as well as drug-seeking behavior via interactions 
with other peptide systems. I.c.v. administration of nicotine in-
creases conditioned place preference and decreases NPY-IR in 
the BNST, which can both be prevented by concurrent i.p. ad-
ministration of the neuromodulator agmatine (Kotagale et al., 
2014). In another study, rats trained to self-stimulate the medial 
forebrain bundle had increased NPY-IR in the BNST, however 
intra-accumbens administration of morphine, which potentiated 
self-stimulation, decreased NPY-IR in the BNST (Desai et al., 
2013). In contrast, others have shown that systemic heroin 
administration in drug-naïve rats decreases NPY expression in 
the BNST, while heroin administration in drug-sensitized rats 
increases it (D'Este et al., 2006). Together, these data suggest 
that NPY interacts with the endogenous opioid system in the 
BNST to regulate reward-related behaviors. Given the density 
of NPY and its receptors in the BNST, as well as observed 
changes in the NPY system in related and connected brain 
regions after chronic alcohol drinking and in alcohol dependence 
(Roy and Pandey, 2002; Slawecki et al., 1999; Sparrow et al., 
2012), it is likely that NPY modulation of BNST function is in-
volved in alcohol drinking behavior and becomes dysregulated 
during the transition to alcohol dependence (Koob, 2003; 2013). 
However, no research to date has reported on the specific role of 

BNST NPY in alcohol-related behaviors.  
In addition to its potential roles in stress and motivated behav-

iors and altered signaling in addiction, NPY in the BNST may also 
undergo aberrant plasticity in other disease states, particularly in 
neurodegenerative conditions. For example, NPY-IR in the BNST 
is greater in people with Huntington’s Disease (Beal et al., 1988). 
And, NPY innervation of the BNST and other limbic structures is 
reduced in a rat model of Alzheimer’s disease, and central ad-
ministration of NPY potentiates nicotine-induced improvement of 
learning and memory in this disease model (Rangani et al., 2012). 
Altogether, behavioral data available to date indicate the potential 
importance of NPY in the BNST in the regulation of a number of 
behaviors, and they highlight the critical need for further charac-
terization of NPY anatomy, signaling, and functional effects in the 
BNST. 
 
PACAP  
 
Pituitary adenylate cyclase-activating polypeptide (PACAP), 
named for its cyclic AMP (cAMP) stimulating activity, was dis-
covered and isolated from ovine hypothalamic tissue in 1989 
(Miyata et al., 1989). Since then, PACAP and its cognate G 
protein-coupled receptor, PAC1 (Harmar et al., 1998; Pisegna 
and Wank 1993), have been implicated in stress-related psychiat-
ric illnesses, particularly post-traumatic stress disorder (PTSD) 
(Almli et al., 2013; Ressler et al., 2011; Uddin et al., 2013; Wang 
et al., 2013). Functionally, PACAP is an α-amidated peptide that 
exists in two forms following cleavage of a prohormone precur-
sor: PACAP38, and its C-terminally truncated form, PACAP27, 
consisting of 38 and 27 amino acid residues, respectively (Miyata 
et al., 1989; 1990). As a member of the vasoactive intestinal pep-
tide (VIP)/secretin/glucagon superfamily, PACAP27 shares 68% 
sequence homology with VIP (Miyata et al., 1989). Like VIP, 
PACAP has high affinity for the Gs protein-coupled receptors 
VPAC1 (Harmar et al., 1998; Ishihara et al., 1992) and VPAC2 
(Harmar et al., 1998; Lutz et al., 1993) in addition to the PAC1 
receptor. Intriguingly, the PAC1 receptor has five splice variants 
that allow for differential coupling of Gα subunits and the en-
gagement of various second messenger systems (Spengler et al., 
1993; Vaudry et al., 2009). Within the BNST, fibrous PACAP ex-
pression is observed throughout the dorsolateral subdivision 
(Piggins et al., 1996), and in close proximity to CRF-expressing 
neurons (Kozicz et al., 1997). Retrograde tracing analysis indi-
cates that PACAP-containing fibers in the BNST originate from 
the paraventricular nucleus of the hypothalamus (PVN) and the 
dorsal vagal complex (Kozicz et al., 1998). Because the BNST 
contains high expression of the PAC1 receptor (Hashimoto et al., 
1996; Jaworski and Proctor 2000), and little expression of VPAC1 
(Ishihara et al., 1992) or VPAC2 (Sheward et al., 1995) receptors, 
PAC1 is the likely postsynaptic target of PACAP in the BNST. 

Behaviorally, PACAP and PAC1 receptor null mice display 
reduced anxiety-like behavior and increased locomotor activity 
(Gaszner et al., 2012; Girard et al., 2006; Hashimoto et al., 
2001; Hattori et al., 2012; Otto et al., 2001). In keeping with 
PACAP’s role as a pro-stress peptide, intracerebroventricular 
(ICV) administration of PACAP increases anxiety-like behavior 
and body weight loss (Dore et al., 2013). Further, infusion of 
PACAP38 into the BNST elevates plasma corticosterone levels 
up to an hour post infusion (Lezak et al., 2014a), corresponding 
with increases in anxiety-like behavior that persist up to one 
week (Hammack et al., 2009; Roman et al., 2014). These ef-
fects are likely attributable to the PAC1 receptor, as local BNST 
infusion of a PAC1 receptor agonist, and not the VPAC receptor 
ligand VIP, also induces anxiety-related behavior (Roman et al., 
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2014). Interestingly, exposure to chronic stress elevates both 
PACAP and PAC1 receptor expression in the BNST (Hammack 
et al., 2009; Lezak et al., 2014b; Roman et al., 2014). As re-
peated systemic corticosterone treatment is sufficient to in-
crease PAC1 receptor expression in the dorsal BNST, but does 
not alter PACAP transcript levels, stress-induced corticosterone 
increases alone do not account for increased BNST PACAP 
expression following chronic stress exposure (Lezak et al., 
2014b). Further, antagonism of the PAC1 receptor in the BNST 
throughout chronic stress exposure can blunt subsequent 
stress-induced increases in corticosterone and anxiety-like 
behavior, thus demonstrating the role of PACAP as a “master 
regulator” of the stress response (Roman et al., 2014; Stroth et 
al., 2011). In addition to alterations in acute and stress-induced 
anxiety, local infusion of PACAP to the BNST reduces food and 
water intake, resulting in weight reduction (Kocho-Schellenberg 
et al., 2014; Roman et al., 2014). Recent evidence also sug-
gests PACAP activity in the BNST may increase learned help-
lessness behavior (Hammack et al., 2012).  

In humans, PACAP is expressed in BNST tissue (Palkovits et 
al., 1995) and shares identical sequence homology with rat and 
ovine PACAP (Kimura et al., 1990; Ogi et al., 1990). Single 
nucleotide polymorphisms (SNPs) in the gene encoding human 
PACAP or the PAC1 receptor have been associated with schiz-
ophrenia (Hashimoto et al., 2007), major depressive disorder 
(Aragam et al., 2011), and PTSD (Almli et al., 2013; Ressler et 
al., 2011; Uddin et al., 2013; Wang et al., 2013). Taken together 
with rodent behavioral data, these results highlight that altera-
tions in PACAP-PAC1 receptor signaling may have profound 
effects on human affective behavior, potentially leading to 
pathological states. Ongoing studies detailing the effects of 
PACAP on stress-induced plasticity within the BNST, and its 
interactions with other BNST neuropeptides, will provide excit-
ing targets for the treatment of these disorders.  
 
NOCICEPTIN  
 
Nociceptin (NOC) is an opiate-like neuropeptide that is ex-
pressed widely throughout the brain. Originally isolated from 
hypothalamic porcine extracts in a screen for ligands that acti-
vate a previously identified orphan like receptor 1 (ORL1 or 
NOP)(Bunzow et al., 1994), NOC (or Orphanin FQ) decreased 
forskolin-induced cAMP production in heterologous cells, dis-
played amino acid sequence similarity to other opiate peptides, 
and induced hyperalgesia in behavioral measurements of pain 
like the hot plate and tail flick assays (Reinscheid et al., 1995). 
NOC protein is a heptadecapeptide encoded within the c-
terminus of the prepronociceptin gene that is highly conserved 
throughout phylogeny (Mollereau et al., 1996). 

Similar to the expression pattern of NOP, initial analysis of 
NOC mRNA presence in various rodent tissues demonstrated 
that this gene is predominantly expressed in the central nerv-
ous system. Detailed analysis of NOC mRNA and protein ex-
pression in rodents using quantitative in situ hybridization and 
immunohistochemistry revealed that NOC and NOP are ex-
pressed within distinct ensembles of cells that, while being 
spread throughout the CNS, display striking enrichment in spe-
cific brain structures like the lateral septum, various hypotha-
lamic nuclei, and the bed nucleus of the stria terminalis (BNST) 
(Boom et al., 1999; Ikeda et al., 1998; Neal et al., 1999). NOC 
is expressed in neurons throughout the BNST, but a heavy 
concentration of NOC+ immunoreactive and mRNA-containing 
cell bodies are present in the laterodorsal portion (Neal et al., 
1999). Additionally, the BNST contains high levels of NOP 

mRNA and application of NOC peptide during ex vivo slice 
electrophysiological analyses of BNST neurons confirmed that 
more than half of BNST neurons (either dorsal or ventral) con-
tain functional NOP (Dawe et al., 2010). 

The advent of pharmacological tools for the study of NOC 
signaling revealed a critical role for the neuropeptide in the 
BNST in the regulation of feeding. Multiple groups have now 
demonstrated that injection of NOC peptide or NOP agonists 
into either the lateral ventricle or third ventricle produces nalox-
one or naltrexone-sensitive hyperphagia (Ciccocioppo et al., 
2002; Leventhal et al., 1998; Matsushita et al., 2009; Polidori et 
al., 2000; Pomonis et al., 1996). Ciccocioppo and colleagues 
later demonstrated that local injections of NOC into the BNST 
(and not other brain regions) can block CRF-induced anorexia 
even at doses that are not hyperphagic when administered 
alone (Ciccocioppo et al., 2003b). Although the details are still 
unclear, these studies demonstrate that one potential mode by 
which NOC promotes feeding is via inhibition of anorexigenic 
signaling pathways. As new anorexigenic neurons are identified 
in the brain, new genetic targeting strategies will be necessary 
to study how NOC-expressing neurons modulate these neu-
rons at a synaptic level. 

In addition to its role in feeding, antagonism of CRF signaling 
by NOC has an anxiolytic effect. At a global level Koster et al. 
demonstrated that the genetic deletion of NOC in mice results 
in elevated anxiety and impairs stress adaptation (Gavioli et al., 
2007; Köster et al., 1999), whereas systemic injections of a 
NOP agonist SCH 221510 decrease anxiety (Varty et al., 2008). 
Additionally, stress and anxiety are sensitive to modulation by 
CRF signaling as injection of CRF throughout the brain is 
anxiogenic and is blocked by local microinjection of NOC into 
the BNST (Rodi et al., 2007).  
 
OXYTOCIN 
 
Oxytocin is a neuropeptide hormone that was originally be-
lieved to function exclusively in the peripheral nervous system 
to promote maternal behaviors (Lee et al., 2009). In fact, oxyto-
cin derives its name from its original proposed function, to stim-
ulate uterine contractions (Dale, 1906). Shortly thereafter, it was 
found that the same hormone, released from the pituitary gland, 
promoted milk secretion (Schafer and Mackenzie, 1911). Based 
on these early studies and others, it was long believed that the 
main function of oxytocin release was to promote appropriate 
maternal care in mammals. It has only been in the past several 
decades that research has shown oxytocin to be a neuropep-
tide that is active in the central nervous system, functioning to 
promote appropriate social behaviors and social affiliation (Insel, 
1992).  

Oxytocin is a 9 amino amino acid neuropeptide that shares a 
similar structure to a related neuropeptide vasopressin (du 
Vigneaud et al., 1953). Importantly, both the structure and social 
affiliation function of oxytocin release is conserved across many 
species, including rats (Calcagnoli et al., 2014), voles (Insel and 
Shapiro, 1992; Kalamatianos et al., 2010), hamsters (Martinez et 
al., 2010; 2013), sheep (Kendrick et al., 1992), and humans 
(Carmichael et al., 1987). Oxytocin has one known receptor, a G 
protein coupled receptor that when bound, stimulates the activity 
of phospholipase C (Gimpl and Fahrenholz, 2001). Within the 
brain, oxytocin is synthesized in the mangocellular neurons of the 
paraventricular and supraoptic nuclei of the hypothalamus and 
most of the hormone is transported to the pituitary gland to be 
released throughout the body (Insel, 1992; Lee et al., 2009). 
Some of these neurons project to other areas of the brain to 
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promote oxytocin release within the central nervous system, 
including projections to the BNST. Through in situ hybridization 
and autoradiography techniques, the oxytocin receptor has 
been shown to be distributed throughout the BNST in many 
different species, and this distribution has been is related to the 
social affilation function of oxytocin (Insel and Shapiro, 1992; 
Kalamatianos et al., 2010; Kendrick et al., 1992; Martinez et al., 
2010; 2013).  

Although oxytocin activity within the BNST has been associ-
ated with a wide variety of behaviors, these behaviors are all 
related to one general function: social affiliation and care of 
offspring. Some of the most striking studies of oxytocin function 
within the BNST have evaluated behavioral differences be-
tween species of voles that show very distinct social affiliation 
behaviors. Interestingly, prairie voles, which display monoga-
mous pair bonding, show increased receptor distribution in the 
BNST compared to polygamous vole species, suggesting a role 
in monogamous pair bonding behaviors (Insel and Shapiro, 
1992). Further, exposure to odors of the opposite sex preferen-
tially activated oxytocin neurons in the PVN, while appropriate 
sexual interactions were dependent on oxytocin release within 
the BNST (Martinez et al., 2013). Finally, during both birth and 
maternal feeding behaviors, oxytocin release is increased with-
in the BNST, providing further support for the role of oxytocin in 
social bonding and maternal behaviors. Interestingly, oxytocin 
release in the BNST is also important for behaviors opposite of 
social affiliation, namely aggression. Specifically, excessively 
aggressive male rats have been shown to have increased oxy-
tocin receptor binding within the BNST (Calcagnoli et al., 2014).  
While much research has focused on the behavioral function of 
oxytocin release within the BNST, relatively little is known about 
the cellular functions of BNST oxytocin. To date, only extracellu-
lar recordings of BNST neurons in response to oxytocin admin-
istration have been completed. These studies have shown that 
application of oxytocin to the BNST results in excitations of a 
subpopulation (roughly 50%) of BNST neurons that is blocked 
in the presence of oxytocin antagonists (Ingram and Moos, 
1992; Ingram et al., 1990). This data suggests that oxytocin 
release in the BNST functions as a neuromodulator to promote 
increased activation of BNST neurons. Future studies can 
begin to evaluate how this cellular activation is related to the 
social behavioral functions. 
 
NEUROTENSIN 
 
The neuropeptide neurotensin (NTS) is expressed in several 
brain regions and in the periphery. There are three cloned NTS 
receptors. Two are 7-TM GPCRs , NTSR1 and NTSR2, while 
interestingly, one receptor, NTSR3, is a cytosolic protein also 
known as sortilin (Caceda et al., 2006). In addition the dorsal 
lateral and oval nucleus of the BNST (both in rodent, human 
and non-human primate) contains a population of neurons 
expressing the 13 amino acid peptide neurotensin (de Campo 
and Fudge 2013; Walter et al., 1991). These cells are known to 
project to a number of hindbrain structures including the peri-
aqueductal grey and the parabrachial nuclei (Gray and 
Magnuson 1992; Moga and Gray 1985a; 1985b; Moga et al., 
1989). Earlier studies have mainly focused on the interactions 
of NTS with the Dopamine system and the roles that NTS may 
play in the pathology of addiction, schizophrenia and Parkinson’s 
Disease [for review see (Binder et al., 2001)]. Recently, however, 
there has been a renewed focus on NTS signaling within subcor-
tical structures particularly in areas associated with natural re-
wards and addiction (Kempadoo et al., 2013; Leinninger et al., 

2011). Recently, the Dumont group has shown that cocaine self-
administration results in a D1 mediated LTP of inhibitory trans-
mission within the BNST that is dependent on NTS signaling 
(Krawczyk et al., 2013). The long-term exposure to cocaine re-
sulted in an increased D1 signaling mechanism that presumably 
enhanced NTS release as NTS could increase IPSCs equally in 
both cocaine and control rats.They suggest that NTS may be 
released as a retrograde signal to impinge on presynaptic termi-
nals to increase GABA release. Indeed a train of depolarizing 
pulses in the post-synaptic cell was sufficient to induce the en-
hancement of GABA release and this effect was blocked by a 
pan NTSR1 and R2 antagonist.  
 
CONCLUSION 
 
In this article we reviewed several prominent neuropeptides and  
their role in influencing both neuronal signaling and behavior in  
the BNST. Additionally, this review highlights the complexity of  
this structure as well as of peptidergic signaling in the brain. The  
majority of these peptides are co-expressed with classical neuro- 
transmitters, as well as potentially other neuropeptides. Because  
of this, while optogenetic approaches can be applied to deter- 
mine how endogenous peptides can modulate known circuits,  
determining the role of peptide release in these same populations  
is more challenging. The first step is determining what the poten- 
tial overlap in neuropeptide expression is in these populations of  
neurons. While classical approaches such as dual in situ have  
provided some basic framework regarding this, given the com- 
plexity, this is likely to require cell type specific genetic profiling  
methods, such as the TRAP approach. Once this is performed,  
the next question is to develop a functional understanding of what  
these peptides in these specific neurons are altering behavior.  
For this, a floxed peptide mouse that allows deletion of the pep- 
tide expression in the presence of Cre recombinase would be  
helpful. Beyond that, there is the need to draw a direct measure  
of how peptide release can influence behavior. This is a more  
challenging question that can be probed with optogenetic and  
chemical genetic approaches, but it requires a rigorous under- 
standing how these individual peptides are released. While this  
multi-tiered approach requires more steps than probing classical  
transmitter function in a circuit, it is important, as peptide recep- 
tors, and modulatory function in general, represents a key strate- 
gy for treatment of psychiatric disorders. 
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