3,506 research outputs found

    An AI approach for scheduling space-station payloads at Kennedy Space Center

    Get PDF
    The Payload Processing for Space-Station Operations (PHITS) is a prototype modeling tool capable of addressing many Space Station related concerns. The system's object oriented design approach coupled with a powerful user interface provide the user with capabilities to easily define and model many applications. PHITS differs from many artificial intelligence based systems in that it couples scheduling and goal-directed simulation to ensure that on-orbit requirement dates are satisfied

    Theory of imaging a photonic crystal with transmission near-field optical microscopy

    Full text link
    While near-field scanning optical microscopy (NSOM) can provide optical images with resolution much better than the diffraction limit, analysis and interpretation of these images is often difficult. We present a theory of imaging with transmission NSOM that includes the effects of tip field, tip/sample coupling, light propagation through the sample and light collection. We apply this theory to analyze experimental NSOM images of a nanochannel glass (NCG) array obtained in transmission mode. The NCG is a triangular array of dielectric rods in a dielectric glass matrix with a two-dimensional photonic band structure. We determine the modes for the NCG photonic crystal and simulate the observed data. The calculations show large contrast at low numerical aperture (NA) of the collection optics and detailed structure at high NA consistent with the observed images. We present calculations as a function of NA to identify how the NCG photonic modes contribute to and determine the spatial structure in these images. Calculations are presented as a function of tip/sample position, sample index contrast and geometry, and aperture size to identify the factors that determine image formation with transmission NSOM in this experiment.Comment: 28 pages of ReVTex, 14 ps figures, submitted to Phys. Rev.

    Experiments with a Slow Neutron Velocity Spectrometer II

    Get PDF
    The apparatus previously used for the determination of neutron energy by time of flight method has been completely rebuilt with a view to increasing the accuracy of measurement as well as the high energy limit. The repetition frequency is obtained from a series of relaxation oscillators and a 50-kc oscillator and frequencies of 100, 200, 500, 1000, and 2500 c.p.s. are available. Four detector channels have been built so that neutrons in four different time of flight groups can be counted simultaneously. When used with the highest repetition frequency, this decreases the time to obtain data by a factor of 24 and has thus made the present experiments feasible with the small Cornell cyclotron. The study of the transmission of Ag with a 1.35-g/cm^2 absorber shows a single strong resonance at 5.8 ev. A re-examination of In with considerably higher resolution than was previously used shows a single resonance at about 1.35 ev. The effective mean life of neutrons in several different sources was examined and a thin paraffin source with Cd backing devised for measurements in the thermal region. The absorption of B has been examined and found to be proportional to 1/v within the limits of error of the experiment, from 0.028 to 50 ev. An experiment to determine the B cross section of the Cd stopped neutrons gave 540×10^(−24) cm^2. The B absorption curve shows that the cross section of thermal neutrons (0.025 ev) is 708×10^(−24) cm^2. It is concluded that the effective energy of the Cd stopped neutrons is not that of kT at thermal energy, for the geometry used, but is 0.041 ev. This conclusion is confirmed by the measured resonances in Ag and In which are higher than the values obtained by the boron absorption method. Correction of these values, as measured by Horvath and Salant (reference 4) for the effective energy of the Cd stopped neutrons, leads to 1.32 ev for In and 5.2 ev for Ag, in agreement with the present results. It is concluded that resonances measured by the boron absorption method are in error by an amount which depends upon the geometry of the experiment, and are probably too low by a factor of 0.041/0.025 = 1.64

    Mesoscopic molecular ions in Bose-Einstein condensates

    Get PDF
    We study the possible formation of large (mesoscopic) molecular ions in an ultracold degenerate bosonic gas doped with charged particles (ions). We show that the polarization potentials produced by the ionic impurities are capable of capturing hundreds of atoms into loosely bound states. We describe the spontaneous formation of these hollow molecular ions via phonon emission and suggest an optical technique for coherent stimulated transitions of free atoms into a specific bound state. These results open up new interesting possibilities for manipulating tightly confined ensembles.Comment: 4 pages (two-columns), 2 figure

    Telemetric Observations of Foraging Ozark Big-Eared Bats in Arkansas

    Get PDF
    Ozark big-eared bat (Corynorhinus townsendii ingens) foraging activities were studied during 1995 in Marion County, Arkansas. Adult bats were equipped with radiotransmitters and tracked during June and July. Foraging activities were generally within 1 kilometer (km) of the roost cave. Male bats ranged farther than females with the exception of one female that flew 2.5 km into a different watershed. Male big-eared bats and northern long-eared bats (Myotis septentrionalis) were also found within the maternity colony

    Inverse-kinematics one-neutron pickup with fast rare-isotope beams

    Get PDF
    New measurements and reaction model calculations are reported for single neutron pickup reactions onto a fast \nuc{22}{Mg} secondary beam at 84 MeV per nucleon. Measurements were made on both carbon and beryllium targets, having very different structures, allowing a first investigation of the likely nature of the pickup reaction mechanism. The measurements involve thick reaction targets and γ\gamma-ray spectroscopy of the projectile-like reaction residue for final-state resolution, that permit experiments with low incident beam rates compared to traditional low-energy transfer reactions. From measured longitudinal momentum distributions we show that the \nuc{12}{C} (\nuc{22}{Mg},\nuc{23}{Mg}+\gamma)X reaction largely proceeds as a direct two-body reaction, the neutron transfer producing bound \nuc{11}{C} target residues. The corresponding reaction on the \nuc{9}{Be} target seems to largely leave the \nuc{8}{Be} residual nucleus unbound at excitation energies high in the continuum. We discuss the possible use of such fast-beam one-neutron pickup reactions to track single-particle strength in exotic nuclei, and also their expected sensitivity to neutron high-ℓ\ell (intruder) states which are often direct indicators of shell evolution and the disappearance of magic numbers in the exotic regime.Comment: 8 pages, 5 figure

    Planar Laser-Induced Fluorescence Velocity Measurements of Retropropulsion Jets in a Mach 12 Freestream

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106464/1/AIAA2013-2810.pd
    • …
    corecore