286 research outputs found

    Radiation tolerance of GaAs1-xSbx solar cells

    Get PDF
    High radiation tolerance of GaAs1-xSbx based solar cells is demonstrated for the low-intensity-low-temperature (LILT) conditions of the target planets Saturn, Jupiter, and Mars. The GaAs1-xSbx-based cells are irradiated with high energy electrons to assess the effect of harsh radiation environment on the solar cell and the response of the cell is then investigated in terms of its photovoltaic operation. This system shows significant radiation resistance to the high energy electron environment for the conditions of the planets of interest. An unusual increase of the short circuit current after irradiation is observed at low temperature, which is supported by a simultaneous increase in the external quantum efficiency of the cell under the same conditions. The open circuit voltage and fill factor of the cell are especially tolerant to irradiation, which is also reflected in unchanged dark current-voltage characteristics of the solar cell upon irradiation particularly at LILT

    Radiation tolerance of GaAs1-xSbx solar cells: A candidate III-V system for space applications

    Get PDF
    The high radiation tolerance of GaAs0.86Sb0.14 based solar cells with a band gap suitable for PV is demonstrated at the low intensity low temperature (LILT) conditions. This system shows remarkable radiation hardness at AM0, and more prominently, at the conditions of several outer planetary targets. This is attributed to an irradiation induced change in the absorber band gap due to local heating and strain relaxation, and the generation of less prohibitive shallow Sb-based defects in the GaAs 1-x Sb x absorber

    The Periotest Method: Implant-Supported Framework Precision of Fit Evaluation

    Full text link
    : In this study, the Periotest instrument was used to measure the precision of fit between cast high noble-metal frameworks and the supporting implants in a patient-simulation model. Three framework conditions and three implant-location variables were used to evaluate the rigidity of the assembly as measured by the Periotest method. The framework variables were (1) one-piece castings (OPC); (2) sectioned-soldered inaccurate castings (SSIC); and (3) sectioned-soldered accurate castings (SSAC). The implant-location variables were right anterior (RA), center (C), and left anterior (LA). Materials and Methods : The patient simulation model used consisted of three self-tapping BrĂ…nemark implants in a reasonable arch curvature in bovine bone. Three working casts were fabricated from the patient-simulation model using polyvinyl siloxane and tapered impression copings. From the working casts, three sets of three frameworks were fabricated as OPCs, SSICs, and SSACs using type 3 high noble alloy. The SSICs were fabricated with a quantitative misfit of 101.6 Îśm at the facial surface, between the abutment-to-gold cylinder interface at the C implant location. Periotest value (PTV) measurements were made at the midfacial surface of the frameworks directly above each abutment-to-gold cylinder interface. Three measurements were made for each test condition. The data were analyzed to compare framework condition(s) and implant location(s) using ANOVA and Fisher's Protected Least Significant Difference Comparison Test. Results : The ANOVA showed that significant differences exist between the mean PTV data for framework condition and for implant location (p < .01). Significant differences were shown between the mean PTV data for the SSAC assemblies and the OPC and SSIC assemblies. The SSICs displayed a more positive (+) mean PTV than the OPCs. The OPC assemblies had a more positive mean PTV than the SSAC assemblies. The mean PTV data for the SSAC assemblies had a significantly different PTV (p < .01) than the other two framework condition assemblies. The OPC and the SSIC assemblies had PTVs that were not significantly different. The C implant location was significantly different from the RA and the LA implant locations (p < .01). The RA and the LA implant locations were not significantly different from each other. The C implant location always demonstrated the most positive mean PTV regardless of the framework condition being tested. Conclusions : The Periotest instrument quantified differences in the precision of fit between three framework conditions. The SSAC assemblies were significantly more rigid than the OPC and SSIC assemblies. The OPC and SSIC assemblies' mean PTVs were not significantly different. The mean PTVs for the C implant location and the RA and LA implant locations were significantly different (p < .01). The mean PTVs of the RA and LA implant locations were not significantly different. The implant-location PTVs followed the same rank order for all three framework conditions. The procedures used to fabricate a more precise fit between the framework and the supporting implants is influenced by the skill of the clinician and technician.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75096/1/j.1532-849X.1996.tb00298.x.pd
    • …
    corecore