3 research outputs found
Utilization of electronic health records for the assessment of adiponectin receptor autoantibodies during the progression of cardio-metabolic comorbidities
Background: Diabetes is a complex, multi-symptomatic disease whose complications drives increases in healthcare costs as the diabetes prevalence grows rapidly world-wide. Real-world electronic health records (EHRs) coupled with patient biospecimens, biological understanding, and technologies can characterize emerging diagnostic autoimmune markers resulting from proteomic discoveries.
Methods: Circulating autoantibodies for C‑terminal fragments of adiponectin receptor 1 (IgG-CTF) were measured by immunoassay to establish the reference range using midpoint samples from 1862 participants in a 20-year observational study of type 2 diabetes and cardiovascular arterial disease (CVAD) conducted by the Fairbanks Institute. The White Blood Cell elastase activity in these patients was assessed using immunoassays for Bikunin and Uristatin. Participants were assigned to four cohorts (healthy, T2D, CV, CV+T2D) based on analysis of their EHRs and the diagnostic biomarkers values and patient status were assessed ten-years post-sample.
Results: The IgG-CTF reference range was determined to be 75–821 ng/mL and IgG-CTF out-ofrange values did not predict cohort or comorbidity as determined from the EHRs at 10 years after sample collection nor did IgG-CTF demonstrate a significant risk for comorbidity or death. Many patients at sample collection time had other conditions (hypertension, hyperlipidemia, or other risk factors) of which only hypertension, Uristatin and Bikunin values correlated with increased risk of developing additional comorbidities (odds ratio 2.58–13.11, P<0.05).
Conclusions: This study confirms that retrospective analysis of biorepositories coupled with EHRs can establish reference ranges for novel autoimmune diagnostic markers and provide insights into prediction of specific health outcomes and correlations to other markers
Rare DEGS1 variant significantly alters de novo ceramide synthesis pathway
The de novo ceramide synthesis pathway is essential to human biology and health but genetic influences remain unexplored. The core function of this pathway is the generation of biologically active ceramide from its precursor, dihydroceramide. Dihydroceramides have diverse, often protective, biological roles; conversely, increased ceramide levels are biomarkers of complex disease. To explore the genetics of the ceramide synthesis pathway, we searched for deleterious nonsynonymous variants in the genomes of 1,020 Mexican Americans from extended pedigrees. We identified a Hispanic ancestry−specific rare functional variant, L175Q, in DEGS1, a key enzyme in the pathway that converts dihydroceramide to ceramide. This amino acid change was significantly associated with large increases in plasma dihydroceramides. Indexes of DEGS1 enzymatic activity were dramatically reduced in heterozygotes. CRISPR/Cas9 genome editing of HepG2 cells confirmed that the L175Q variant results in a partial loss of function for the DEGS1 enzyme. Understanding the biological role of DEGS1 variants, such as L175Q, in ceramide synthesis may improve the understanding of metabolic-related disorders, and spur ongoing research of drug targets along this pathway
Genome of the Bacterium Streptococcus pneumoniae Strain R6
Streptococcus pneumoniae is among the most significant causes of bacterial disease in humans. Here we report the 2,038,615-bp genomic sequence of the gram-positive bacterium S. pneumoniae R6. Because the R6 strain is avirulent and, more importantly, because it is readily transformed with DNA from homologous species and many heterologous species, it is the principal platform for investigation of the biology of this important pathogen. It is also used as a primary vehicle for genomics-based development of antibiotics for gram-positive bacteria. In our analysis of the genome, we identified a large number of new uncharacterized genes predicted to encode proteins that either reside on the surface of the cell or are secreted. Among those proteins there may be new targets for vaccine and antibiotic development