262 research outputs found

    Observational properties of cosmic gamma-ray bursts

    Get PDF
    A brief overview of the major observational results obtained in gamma-ray burst studies is presented. Also discussed is to what extent the thermonuclear model, which appears at present to be the most plausible, can account for the observed properties of the bursts. The investigation of gamma-ray bursts should cover observations of the time histories of events, energy spectra, and their variablility, source localization, and inspection of the localization regions during the active and quiescent phases of the source in other wavelengths, as well as, evaluation of the statistical distributions of the data obtained

    Reactivation and Precise IPN Localization of the Soft Gamma Repeater SGR1900+14

    Get PDF
    In 1998 May, the soft gamma repeater SGR1900+14 emerged from several years of quiescence and emitted a series of intense bursts, one with a time history unlike any previously observed from this source. Triangulation using Ulysses, BATSE, and KONUS data give a 1.6 square arcminute error box near the galactic supernova remnant G42.8+0.6. This error box contains a quiescent soft X-ray source which is probably a neutron star associated with the soft repeater.Comment: Accepted for publication in the Astrophysical Journal Letter

    Experimental data as evidence against the hypothesis on the earth's dust cloud

    Get PDF
    Cosmos and Explorer satellite data used to reject hypothesis of terrestrial meteoroid and dust cloud

    The Giant Flare of 1998 August 27 from SGR 1900+14: II. Radiative Mechanism and Physical Constraints on the Source

    Full text link
    (ABBREVIATED) The extraordinary 1998 August 27 giant flare places strong constraints on the physical properties of its source, SGR 1900+14. We make detailed comparisons of the published data with the magnetar model. The giant flare evolved through three stages, whose radiative mechanisms we address in turn. A triggering mechanism is proposed, whereby a helical distortion of the core magnetic field induces large-scale fracturing in the crust and a twisting deformation of the crust and exterior magnetic field. The envelope of the pulsating tail of the August 27 flare can be accurately fit, after ~40 s, by the contracting surface of a relativistically hot, but inhomogeneous, trapped fireball. We quantify the effects of direct neutrino-pair emission, thereby deducing a lower bound ~ 10^{32} G-cm^3 to the magnetic moment of the confining field. The radiative flux during the intermediate ~40 s of the burst appears to exceed the trapped fireball fit. The spectrum and lightcurve of this smooth tail are consistent with heating in an extended pair corona, possibly powered by continuing seismic activity in the star. We consider in detail the critical luminosity, below which a stable balance can be maintained between heating and radiative cooling in a confined, magnetized pair plasma; but above which the confined plasma runs away to local thermodynamic equilibrium. In the later pulsating tail, the best fit temperature equilibrates at a value which agrees well with the regulating effect of photon splitting. The remarkable four-peaked substructure within each 5.16-s pulse provides strong evidence for the presence of higher magnetic multipoles in SGR 1900+14. The corresponding collimation of the X-ray flux is related to radiative transport in a super-QED magnetic field.Comment: 11 July 2001, accepted for publication in the Astrophysical Journa

    Konus catalog of SGR activity to 2000

    Get PDF
    Observational data on the bursting activity of all five known Soft Gamma Repeaters are presented. This information was obtained with Konus gamma-ray burst experiments on board Venera 11-14, Wind, and Kosmos-2326 spacecraft in the period from 1978 to 2000. These data on appearance rates, time histories, and energy spectra of repeated soft bursts obtained with similar instruments and collected together in a comparable form should be useful for further studies of SGRs. (available at http://www.ioffe.rssi.ru/LEA/SGR/Catalog/).Comment: 20 pages, including 5 tables, LaTeX AASTeX5.0, with 50 PNG-files of reduced size figures. Catalog with full size figures is available at http://www.ioffe.rssi.ru/LEA/SGR/Catalog/ To be submitted to ApJ Supp

    Unusual Burst Emission from the New Soft Gamma Repeater SGR1627-41

    Get PDF
    In June-July,1998 the Konus-Wind burst spectrometer observed a series of bursts from the new soft gamma repeater SGR1627-41. Time histories and energy spectra of the bursts have been studied, revealing fluences and peak fluxes in the ranges of 3x10^{-7} - 7.5x10^{-6} erg cm^{-2} and 10^{-5} - 10^{-4}erg cm^{-2}/s respectively. One event, 18 June 6153.5sUT stands out dramatically from this series. Its fluence is ~7x10^{-4} erg cm^{-2} and peak flux ~2x10^{-2} erg cm^{-2}/s. These values from a source at a distance of 5.8 kpc yield an energy output of ~3x10^{42}erg and maximum luminosity of ~8x10^{43} erg/s, similar to the values for the famous March 5, 1979 and August27,1998 events. In terms of energy, this event is another giant outburst seen in a third SGR! However, this very energetic burst differs significantly from the other giant outbursts. It exhibits no separate initial pulse with a fast rise time, no extended tail, and no pulsations. It is rather similar to ordinary repeated bursts but is a few hundred times stronger in intensity. According to the magnetar model by Thompson and Duncan (1995) such a burst may be initiated by a strong starquake when a crust fracture propagates over the whole surface of a neutron star.Comment: 7 pages, 5 figures. To be appeared in ApJ
    • …
    corecore