152 research outputs found

    Medical genetics and genomic medicine in the United States. Part 2: Reproductive genetics, newborn screening, genetic counseling, training, and registries

    Get PDF
    eview of genetics in the United States with emphasis on the prenatal, metabolic, genetic counseling, and training aspects of the field

    BOC is a modifier gene in holoprosencephaly

    Full text link
    Holoprosencephaly (HPE), a common developmental defect of the forebrain and midface, has a complex etiology. Heterozygous, loss‐of‐function mutations in the sonic hedgehog (SHH) pathway are associated with HPE. However, mutation carriers display highly variable clinical presentation, leading to an “autosomal dominant with modifier” model, in which the penetrance and expressivity of a predisposing mutation is graded by genetic or environmental modifiers. Such modifiers have not been identified. Boc encodes a SHH coreceptor and is a silent HPE modifier gene in mice. Here, we report the identification of missense BOC variants in HPE patients. Consistent with these alleles functioning as HPE modifiers, individual variant BOC proteins had either loss‐ or gain‐of‐function properties in cell‐based SHH signaling assays. Therefore, in addition to heterozygous loss‐of‐function mutations in specific SHH pathway genes and an ill‐defined environmental component, our findings identify a third variable in HPE: low‐frequency modifier genes, BOC being the first identified.Holoprosencephaly (HPE), the most developmental common defect of the forebrain, is best explained by a “mutation with modifier” model. However, HPE modifier genes have not been identified. Here, we report HPE‐associated missense variants within the Hedgehog coreceptor BOC (arrows). Functional analyses of these variants, along with previous work in mouse models, are consistent with the conclusion that these variants act as phenotypic modifiers of a driver mutation or environmental insult.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138902/1/humu23286-sup-0001-text.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138902/2/humu23286_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138902/3/humu23286.pd

    Holoprosencephaly–polydactyly/pseudotrisomy 13: a presentation of two new cases and a review of the literature

    Get PDF
    Patients with a combination of holoprosencephaly and polydactyly, but with apparently normal chromosomes, may be clinically diagnosed with holoprosencephaly–polydactyly syndrome (HPS), also termed pseudotrisomy 13. However, the criteria for HPS have been controversial since the advent of the diagnostic term, and a clear understanding of the condition lacks definitive delineation. We review the historical and current perspectives on the condition and analyze findings in 40 patients with apparent HPS, including cases from the literature and two previously unreported patients. Overall, our analysis suggests previously unrecognized trends in patients diagnosed with HPS. Specifically, there appears to be a higher prevalence of visceral anomalies, most significantly cardiac and genitourinary, but also with increased gastrointestinal, pulmonary, adrenal, skeletal, and renal abnormalities, in patients with HPS. Although these visceral anomalies may not be essential for the identification of HPS, clinicians should be aware of the presence of such characteristics in these patients to optimize management and help establish etiologies

    A common genetic network underlies substance use disorders and disruptive or externalizing disorders

    Get PDF
    Here we summarize evidence obtained by our group during the last two decades, and contrasted it with a review of related data from the available literature to show that behavioral syndromes involving attention deficit/hyperactivity disorder (ADHD), externalizing disorders, and substance-use disorder (SUD) share similar signs and symptoms (i.e., have a biological basis as common syndromes), physiopathological and psychopathological mechanisms, and genetic factors. Furthermore, we will show that the same genetic variants harbored in different genes are associated with different syndromes and that non-linear interactions between genetic variants (epistasis) best explain phenotype severity, long-term outcome, and response to treatment. These data have been depicted in our studies by extended pedigrees, where ADHD, externalizing symptoms, and SUD segregate and co-segregate. Finally, we applied here a new formal network analysis using the set of significantly replicated genes that have been shown to be either associated and/or linked to ADHD, disruptive behaviors, and SUD in order to detect significantly enriched gene categories for protein and genetic interactions, pathways, co-expression, co-localization, and protein domain similarity. We found that networks related to pathways involved in axon guidance, regulation of synaptic transmission, and regulation of transmission of nerve impulse are overrepresented. In summary, we provide compiled evidence of complex networks of genotypes underlying a wide phenotype that involves SUD and externalizing disorders

    Correction

    Get PDF

    Correction

    No full text

    Special Issue: Holoprosencephaly

    No full text
    International audienc

    Toward a better understanding of ADHD: LPHN3 gene variants and the susceptibility to develop ADHD

    No full text
    During the past 15 years, an impressive amount of genetic information has become available in the research field of psychiatry, particularly as it relates to attentiondeficit/ hyperactivity disorder (ADHD). However, the classical clinical approach to ADHD has minimally affected and not significantly been improved by this genetic revolution. It is difficult to predict how long it will take for genetic findings to alter the way clinicians treat patients with ADHD. New medications or treatment protocols may take years to become routine clinical practice. However, when taken together, recent successes in genomics, pharmacogenomics, and genetic epidemiology have the potential (1) to prevent comorbid consequences of ADHD, (2) to individualize therapies for patients with ADHD, and (3) to define new epidemiological policies to aid with the impact of ADHD on society. Here, we present an overview of how genetic research may affect and improve the quality of life of patients withADHD: as an example, we use the discovery of LPHN3, a new gene in which variants have recently been shown to be associated with ADHD
    corecore