36 research outputs found

    Multichannel vector field control module for LLRF control of superconducting cavities

    Get PDF
    The field control of multiple superconducting RF cavities with a single Klystron, such as the proposed RF scheme for the ILC, requires high density (number of RF channels) signal processing hardware so that vector control may be implemented with minimum group delay. The MFC (Multichannel Field Control) module is a 33-channel, FPGA based down-conversion and signal processing board in a single VXI slot, with 4 channels of high speed DAC outputs. A 32-bit, 400MHz floating point DSP provides additional computational and control capability for calibration and implementation of more complex control algorithms. Multiple high speed serial transceivers on the front panel and the backplane bus allow a flexible architecture for inter-module real time data exchanges. An interface CPLD supports the VXI bus protocol for communication to a Slot0 CPU, with Ethernet connections for remote in system programming of the FPGA and DSP as well as data acquisition

    The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to manuka honey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibiotic resistance of bacteria is on the rise, thus the discovery of alternative therapeutic agents is urgently needed. Honey possesses therapeutic potential, including wound healing properties and antimicrobial activity. Although the antimicrobial activity of honey has been effectively established against an extensive spectrum of microorganisms, it differs depending on the type of honey. To date, no extensive studies of the antibacterial properties of tualang (<it>Koompassia excelsa</it>) honey on wound and enteric microorganisms have been conducted. The objectives of this study were to conduct such studies and to compare the antibacterial activity of tualang honey with that of manuka honey.</p> <p>Methods</p> <p>Using a broth dilution method, the antibacterial activity of tualang honey against 13 wound and enteric microorganisms was determined; manuka honey was used as the control. Different concentrations of honey [6.25-25% (w/v)] were tested against each type of microorganism. Briefly, two-fold dilutions of honey solutions were tested to determine the minimum inhibitory concentration (MIC) against each type of microorganism, followed by more assays within a narrower dilution range to obtain more precise MIC values. MICs were determined by both visual inspection and spectrophotometric assay at 620 nm. Minimum bactericidal concentration (MBC) also was determined by culturing on blood agar plates.</p> <p>Results</p> <p>By visual inspection, the MICs of tualang honey ranged from 8.75% to 25% compared to manuka honey (8.75-20%). Spectrophotometric readings of at least 95% inhibition yielded MIC values ranging between 10% and 25% for both types of honey. The lowest MBC for tualang honey was 20%, whereas that for manuka honey was 11.25% for the microorganisms tested. The lowest MIC value (8.75%) for both types of honey was against <it>Stenotrophomonas maltophilia</it>. Tualang honey had a lower MIC (11.25%) against <it>Acinetobacter baumannii </it>compared to manuka honey (12.5%).</p> <p>Conclusion</p> <p>Tualang honey exhibited variable activities against different microorganisms, but they were within the same range as those for manuka honey. This result suggests that tualang honey could potentially be used as an alternative therapeutic agent against certain microorganisms, particularly <it>A. baumannii </it>and <it>S. maltophilia</it>.</p

    Production and Testing of the LO and CLK Generation Module Built in MicroTCA.4 Form Factor

    No full text
    The local oscillator and clock generation module generates a low noise local oscillator out of the global reference that is distributed over the accelerator. The module is implemented such that it fits into the rear slots 15 and 14 of a standard MicroTCA.4 crate. In the contribution we present the manufacturing and testing process of 60 units that are being deployed in the European XFEL. Comparison between modules is performed based on the measured parameters

    A new Zone 3 Class for RF Signals up to 3 GHz in MicroTCA.4

    No full text
    In MicroTCA.4 the connection between AMC and RTM is realized with a differential pair connector. Transporting high frequency analog signals (> 300 MHz) over the differential pair connector leads to intense crosstalk between the differential channels. A new type of Zone 3 connection is needed, capable of transporting signals up to 3 GHz. The new analog Zone3 class RF1.0 based on single-ended coaxial connectors will be presented. First measurement data from several evaluation boards showing the single-ended performance and isolation of the new coaxial connectors will also be presented. The class RF1.0 can be used for direct sampling application feeding RF signals from the RTM to the AMC side or for RF sampling DAC applications in the opposite direction

    RTM RF Backplane for MicroTCA.4 Crates

    No full text
    We developed a new Rear Transition Module (RTM) Backplane for MicroTCA.4 crates that is compliant with the PICMG standard and an optional crate extension. The RTM Backplane provides multiple links for high-precision clock and RF signals to analog RTM cards. Usage of an RTM Backplane allows to significantly simplify the cable management, and therefore to increase the reliability of electronic controls when multiple analog RF front-ends are required. In addition, the RTM backplane allows also to add so called extended RTMs (eRTM) and RTM Power Modules (RTM-PM) to an 12 slot MicroTCA crate. Up to four 6 HE wide eRTMs and two RTM-PMs can be installed behind the front PM and MCH modules. An eRTM attached to the MCH via Zone 3 connector is used for analog signal management on the RTM backplane. This eRTM allows also installing a powerful CPU to extend the processing capacity of the MTCA.4 crate. Three additional eRTMs provide space for analog electronics for supplying signals to the uRTMs. The RTM-PMs deliver managed low-noise (separated from front crate PMs) analog bipolar power (+VV,-VV) for the RTMs and an unipolar power for the eRTMs. This extends functionality of the MicroTCA.4 crate and offers unique performance improvement for analog front-end electronics. This paper covers a new concept of the RTM Backplane, a new implementation for the real-time LLRF control system and performance evaluation of designed prototype
    corecore