397 research outputs found

    Reinforcing Motor Re-Training and Rehabilitation through Games: A Machine-Learning Perspective

    Get PDF
    tation is usually obtained by either a real teacher (e.g. the physical therapist), or a vir-tual teacher (such as in virtual reality-based rehabilitation), thus triggering an instance of the learning-by- imitation scheme. If the rehabilitation exercises are administered in a game fashion, which means asking the player to choose a solution in terms of movement execution out of a number of discrete possi-ble alternatives, we can hypothesize that this is an example of a reinforcement-learning scheme (Sutton and Barto, 1998). The internal model hypothesis, i.e. the presence of an internal representation of the dynamics and kinematics of movemen

    Dial It In: Rotating RF Sensors to Enhance Radio Tomography

    Full text link
    A radio tomographic imaging (RTI) system uses the received signal strength (RSS) measured by RF sensors in a static wireless network to localize people in the deployment area, without having them to carry or wear an electronic device. This paper addresses the fact that small-scale changes in the position and orientation of the antenna of each RF sensor can dramatically affect imaging and localization performance of an RTI system. However, the best placement for a sensor is unknown at the time of deployment. Improving performance in a deployed RTI system requires the deployer to iteratively "guess-and-retest", i.e., pick a sensor to move and then re-run a calibration experiment to determine if the localization performance had improved or degraded. We present an RTI system of servo-nodes, RF sensors equipped with servo motors which autonomously "dial it in", i.e., change position and orientation to optimize the RSS on links of the network. By doing so, the localization accuracy of the RTI system is quickly improved, without requiring any calibration experiment from the deployer. Experiments conducted in three indoor environments demonstrate that the servo-nodes system reduces localization error on average by 32% compared to a standard RTI system composed of static RF sensors.Comment: 9 page

    Modal and nonmodal stability analysis of electrohydrodynamic flow with and without cross-flow

    Get PDF
    We report the results of a complete modal and nonmodal linear stability analysis of the electrohydrodynamic flow (EHD) for the problem of electroconvection in the strong injection region. Convective cells are formed by Coulomb force in an insulating liquid residing between two plane electrodes subject to unipolar injection. Besides pure electroconvection, we also consider the case where a cross-flow is present, generated by a streamwise pressure gradient, in the form of a laminar Poiseuille flow. The effect of charge diffusion, often neglected in previous linear stability analyses, is included in the present study and a transient growth analysis, rarely considered in EHD, is carried out. In the case without cross-flow, a non-zero charge diffusion leads to a lower linear stability threshold and thus to a more unstable low. The transient growth, though enhanced by increasing charge diffusion, remains small and hence cannot fully account for the discrepancy of the linear stability threshold between theoretical and experimental results. When a cross-flow is present, increasing the strength of the electric field in the high-ReRe Poiseuille flow yields a more unstable flow in both modal and nonmodal stability analyses. Even though the energy analysis and the input-output analysis both indicate that the energy growth directly related to the electric field is small, the electric effect enhances the lift-up mechanism. The symmetry of channel flow with respect to the centerline is broken due to the additional electric field acting in the wall-normal direction. As a result, the centers of the streamwise rolls are shifted towards the injector electrode, and the optimal spanwise wavenumber achieving maximum transient energy growth increases with the strength of the electric field

    Stability of planar shear flow in the presence of electro-convectioncross-flow is presented. Emphasis is put on understanding

    No full text
    International audienceThe first complete study of linear, modal and non-modal stability of the EHD electroconvection problem with and without how electroconvection changes the stability characteristics of the plane Poiseuille flow

    Linear stability of Poiseuille flow over a steady spanwise Stokes layer

    Get PDF
    The temporal linear stability of plane Poiseuille flow modified by spanwise forcing applied at the walls is considered. The forcing consists of a stationary streamwise distribution of spanwise velocity that generates a steady transversal Stokes layer, known to reduce skin-friction drag in a turbulent flow with little energetic cost. A large numerical study is carried out, where the effects of both the physical and the discretization parameters are thoroughly explored, for three representative subcritical values of the Reynolds number Re. Results show that the spanwise Stokes layer significantly affects the linear stability of the system. For example, at Re=2000 the wall forcing is found to more than double the negative real part of the least-stable eigenvalue, and to decrease by nearly a factor of 4 the maximum transient growth of perturbation energy. These observations are Re dependent and further improve at higher Re. Comments on the physical implications of the obtained results are provided, suggesting that spanwise forcing might be effective to obtain at the same time a delayed transition to turbulence and a reduced turbulent friction

    Linear stability of Poiseuille flow over a steady spanwise Stokes layer

    Full text link
    The temporal linear stability of plane Poiseuille flow modified by spanwise forcing applied at the walls is considered. The forcing consists of a stationary streamwise distribution of spanwise velocity that generates a steady transversal Stokes layer, known to reduce skin-friction drag in a turbulent flow with little energetic cost. A large numerical study is carried out, where the effects of both the physical and the discretization parameters are thoroughly explored, for three representative subcritical values of the Reynolds number Re. Results show that the spanwise Stokes layer significantly affects the linear stability of the system. For example, at Re=2000 the wall forcing is found to more than double the negative real part of the least-stable eigenvalue, and to decrease by nearly a factor of four the maximum transient growth of perturbation energy. These observations are Re-dependent and further improve at higher ReRe. Comments on the physical implications of the obtained results are provided, suggesting that spanwise forcing might be effective to obtain at the same time a delayed transition to turbulence and a reduced turbulent friction.Comment: Under consideration by PR

    Biologically Inspired Modelling for the Control of Upper Limb Movements: From Concept Studies to Future Applications

    Get PDF
    Modelling is continuously being deployed to gain knowledge on the mechanisms of motor control. Computational models, simulating the behaviour of complex systems, have often been used in combination with soft computing strategies, thus shifting the rationale of modelling from the description of a behaviour to the understanding of the mechanisms behind it. In this context, computational models are preferred to deterministic schemes because they deal better with complex systems. The literature offers some striking examples of biologically inspired modelling, which perform better than traditional approaches when dealing with both learning and adaptivity mechanisms. Can these theoretical studies be transferred into an application framework? That is, can biologically inspired models be used to implement rehabilitative devices? Some evidences, even if preliminary, are presented here, and support an affirmative answer to the previous question, thus opening new perspectives

    The development of postural strategies in children: a factorial design study

    Get PDF
    BACKGROUND: The present study investigates balance control mechanisms, their variations with the absence of visual input, and their development in children from 7 to 11 years old, in order to provide insights on the development of balance control in the pediatric population. METHODS: Posturographic data were recorded during 60 s trials administered on a sample population of 148 primary school children while stepping and then quietly standing on a force plate in two different vision conditions: eyes closed and eyes open. The extraction of posturographic parameters on the quiet standing phase of the experiment was preceded by the implementation of an algorithm to identify the settling time after stepping on the force plate. The effect of different conditions on posturographic parameters was tested with a two-way ANOVA (Age × Vision), and the corresponding eyes-closed/eyes-open (Romberg) Ratios underwent a one-way ANOVA. RESULTS: Several posturographic measures were found to be sensitive to testing condition (eyes closed vs. eyes open) and some of them to age and anthropometric parameters. The latter relationship did not explain all the data variability with age. An evident modification of postural strategy was observed between 7 and 11 years old children. CONCLUSION: Simple measures extracted from posturographic signals resulted sensitive to vision and age: data acquired from force plate made it possible to confirm the hypothesis of the development of postural strategies in children as a more mature selection and re-weighting of proprioceptive inputs to postural control in absence of visual input

    Modal and Non-Modal Stability Analysis of Electrohydrodynamic Flow with and Without Cross-Flow

    Get PDF
    We report the results of a complete modal and non-modal linear stability analysis of the electrohydrodynamic flow for the problem of electroconvection in the strong-injection region. Convective cells are formed by the Coulomb force in an insulating liquid residing between two plane electrodes subject to unipolar injection. Besides pure electroconvection, we also consider the case where a cross-flow is present, generated by a streamwise pressure gradient, in the form of a laminar Poiseuille flow. The effect of charge diffusion, often neglected in previous linear stability analyses, is included in the present study and a transient growth analysis, rarely considered in electrohydrodynamics, is carried out. In the case without cross-flow, a non-zero charge diffusion leads to a lower linear stability threshold and thus to a more unstable flow. The transient growth, though enhanced by increasing charge diffusion, remains small and hence cannot fully account for the discrepancy of the linear stability threshold between theoretical and experimental results. When a cross-flow is present, increasing the strength of the electric field in the high-Re Poiseuille flow yields a more unstable flow in both modal and non-modal stability analyses. Even though the energy analysis and the input-output analysis both indicate that the energy growth directly related to the electric field is small, the electric effect enhances the lift-up mechanism. The symmetry of channel flow with respect to the centreline is broken due to the additional electric field acting in the wall-normal direction. As a result, the centres of the streamwise rolls are shifted towards the injector electrode, and the optimal spanwise wavenumber achieving maximum transient energy growth increases with the strength of the electric field

    CFSO3: A New Supervised Swarm-Based Optimization Algorithm

    Get PDF
    We present CFSO3, an optimization heuristic within the class of the swarm intelligence, based on a synergy among three different features of the Continuous Flock-of-Starlings Optimization. One of the main novelties is that this optimizer is no more a classical numerical algorithm since it now can be seen as a continuous dynamic system, which can be treated by using all the mathematical instruments available for managing state equations. In addition, CFSO3allows passing from stochastic approaches to supervised deterministic ones since the random updating of parameters, a typical feature for numerical swam-based optimization algorithms, is now fully substituted by a supervised strategy: in CFSO3the tuning of parameters isa prioridesigned for obtaining both exploration and exploitation. Indeed the exploration, that is, the escaping from a local minimum, as well as the convergence and the refinement to a solution can be designed simply by managing the eigenvalues of the CFSO state equations. Virtually in CFSO3, just the initial values of positions and velocities of the swarm members have to be randomly assigned. Both standard and parallel versions of CFSO3together with validations on classical benchmarks are presented
    corecore