163 research outputs found

    Non-conventional gas phase remediation of volatile halogenated compounds by dehydrated bacteria

    Get PDF
    Traditional biological removal processes are limited by the low solubility of halogenated compounds in aqueous media. A new technology appears very suitable for the remediation of these volatile organic compounds (VOCs). Solid/gas bio-catalysis applied in VOC remediation can transform halogenated compounds directly in the gas phase using dehydrated cells as a bio-catalyst. The hydrolysis of volatile halogenated substrates into the corresponding alcohol was studied in a solid/gas biofilter where lyophilised bacterial cultures were used as the catalyst. Four strains containing dehalogenase enzymes were tested for the hydrolysis of 1-chlorobutane. The highest removal yield was obtained using the dhaA-containing strains, the maximal reaction rate of 0.8 micromol min(-1)g(-1) being observed with Escherichia coli BL21(DE3)(dhaA). Various treatments such as cell disruption by lysozyme or alkaline gas addition in the bio-filter could stabilise the dehalogenase activity of the bacteria. A pre-treatment of the dehydrated bacterial cells by ammonia vapour improved the stability of the catalyst and a removal activity of 0.9 micromol min(-1)g(-1) was then obtained for 60h. Finally, the process was extended to a range of halogenated substrates including bromo- and chloro-substrates. It was shown that the removal capacity for long halogenated compounds (C(5)-C(6)) was greatly increased relative to traditional biological processes

    Biotransformation of halogenated compounds by lyophilized cells of Rhodococcus erythropolis in a continuous solid-gas biofilter

    Get PDF
    The irreversible hydrolysis of 1-chlorobutane to 1-butanol and HCl by lyophilized cells of Rhodococcus erythropolis NCIMB 13064, using a solid–gas biofilter, is described as a model reaction. 1-Chlorobutane is hydrolyzed by the haloalkane dehalogenase from R. erythropolis. A critical water thermodynamic activity (aw ) of 0.4 is necessary for the enzyme to become active and optimal dehalogenase activity for the lyophilized cells is obtained for a aw of 0.9. A temperature of reaction of 40 ◦ C represents the best compromise between stability and activity. The activation energy of the reaction was determined and found equal to 59.5 kJ/mol. The absence of internal diffusional limitation of substrates in the biofilter was observed. The apparent Michaelis–Menten constants Km and Vmax for the lyophilized cells of R. erythropolis were 0.011 (1-chlorobutane thermodynamic activity, aClBut ) and 3.22 µmoles/min g of cell, respectively. The activity and stability of lyophilized cells were dependent on the quantity of HCl produced. Since possible modifications of local pH by the HCl product, pH control by the addition of volatile Lewis base (triethylamine) in the gaseous phase was employed. Triethylamine plays the role of a volatile buffer that controls local pH and the ionization state of the dehalogenase and prevents inhibition by Cl− . Finally, cells broken by the action of the lysozyme, were more stable than intact cells and more active. An initial reaction rate equal to 4.5 µmoles/min g of cell was observed

    Coupled oxidation–reduction of butanol–hexanal by resting Rhodococcus erythropolis NCIMB 13064 cells in liquid and gas phases

    Get PDF
    Rhodococcus erythropolis is a promising Gram-positive bacterium capable of numerous bioconversions including those involving alcohol dehydrogenases (ADHs). In this work, we compared and optimized the redox biocatalytic performances of 1-butanol-grown R. erythropolis NCIMB 13064 cells in aqueous and in non-conventional gas phase using the 1-butanol–hexanal oxidation–reduction as model reaction. Oxidation of 1-butanol to butanal is tightly coupled to the reduction of hexanal to 1-hexanol at the level of a nicotinoprotein–ADH-like enzyme. Cell viability is dispensable for reaction. In aqueous batch conditions, fresh and lyophilized cells are efficient redox catalysts (oxidation–reduction rate = 76 micromol min−1 g cell dry mass−1) being also reactive towards benzyl alcohol, (S)-2-pentanol, and geraniol as reductants. However, butanol hexanal oxidation–reduction is strongly limited by product accumulation and by hexanal toxicity that is amajor factor influencing cell behavior and performance. Reaction rate is maximal at 40 ◦C pH 7.0 in aqueous phase and at 60 ◦C- pH 7.0–9.0 in gas phase. Importantly, lyophilized cells also showed to be promising redox catalysts in the gas phase (at least 65 micromol min−1 g cell dry mass−1). The system is notably stable for several days at moderate thermodynamic activities of hexanal (0.06–0.12), 1-butanol (0.12) and water (0.7)

    Bioremediation of halogenated compounds: comparison of dehalogenating bacteria and improvement of catalyst stability

    Get PDF
    Five bacterial strains were compared for halogenated compounds conversion in aqueous media. Depending on the strain, the optimal temperature for dehalogenase activity of resting cells varied from 30 to 45 degrees C, while optimal pH raised from 8.4 to 9.0. The most effective dehalogenase activity for 1 chlorobutane conversion was detected with Rhodococcus erythropolis NCIMB13064 and Escherichia coli BL21 (DE3) (DhaA). The presence of 2-chlorobutane or propanal in the aqueous media could inhibit the 1-chlorobutane transformation

    A polyphenol-rich plant extract prevents hypercholesterolemia and modulates gut microbiota in western diet-fed mice

    Get PDF
    IntroductionTotum-070 is a combination of five plant extracts enriched in polyphenols to target hypercholesterolemia, one of the main risk factors for cardiovascular diseases. The aim of this study was to investigate the effects of Totum-070 on cholesterol levels in an animal model of diet-induced hypercholesterolemia.MethodsC57BL/6JOlaHsd male mice were fed a Western diet and received Totum-070, or not, by daily gavage (1g/kg and 3g/kg body weight) for 6 weeks.ResultsThe Western diet induced obesity, fat accumulation, hepatic steatosis and increased plasma cholesterol compared with the control group. All these metabolic perturbations were alleviated by Totum-070 supplementation in a dose-dependent manner. Lipid excretion in feces was higher in mice supplemented with Totum-070, suggesting inhibition of intestinal lipid absorption. Totum-070 also increased the fecal concentration of short chain fatty acids, demonstrating a direct effect on intestinal microbiota.DiscussionThe characterization of fecal microbiota by 16S amplicon sequencing showed that Totum-070 supplementation modulated the dysbiosis associated with metabolic disorders. Specifically, Totum-070 increased the relative abundance of Muribaculum (a beneficial bacterium) and reduced that of Lactococcus (a genus positively correlated with increased plasma cholesterol level). Together, these findings indicate that the cholesterol-lowering effect of Totum-070 bioactive molecules could be mediated through multiple actions on the intestine and gut microbiota

    Difficultés diagnostiques de la maladie de Kawasaki (à propos de huit cas)

    No full text
    CAEN-BU Médecine pharmacie (141182102) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Nouveau procédé de traitement de composés organiques volatils (COV) par biofiltration solide/gaz (application à la transformation des composés halogénés volatils par des micro-organismes déshydratés)

    No full text
    Les COV sont des polluants atmosphériques indésirables. Or, la qualité de l'air est devenu un enjeu majeur de notre société moderne. Cette prise de conscience amènent donc les industriels à proposer des procédés de traitement innovants pour lutter contre les émissions atmosphériques. C'est dans cette démarche que s'inscrit cette thèse préparée au LBCB et soutenue par l'ADEME et la région Poitou-Charentes. La transformation directement en phase gaz de COV par des micro-organismes déshydratés représente un nouveau concept en biodépollution.. Pour la première fois, il a été mis en évidence la possibilité d'utiliser des bactéries déshydratées telles que Rhodococcus erythropolis NCIMB13064 ou Xanthobacter autotrophicus GJ10 pour transformer des composés halogénés volatils en leurs alcools correspondant dans un biofiltre solide/gaz. Des travaux sur une réaction modèle, la déhalogénation du 1-chlorobutane en butan-1-ol, ont permis d'optimiser l'activité dépolluante de ces bactéries. Ainsi, des paramètres tels que la température, l'activité thermodynamique des molécules dans la phase gaz (eau, COV,...) ou le flux gazeux total influent directement sur la capacité de dégradation et la stabilité du système. Différents prétraitements ont été réalisés sur les bactéries afin d'améliorer leur performance catalytique dans le biofiltre. Les bactéries subissent une perméabilisation de leur paroi (par ultrasons ou lysozyme) avant déshydratation. Ensuite, directement dans le système de dépollution, les bactéries sont traitées pendant quelques minutes ou en continu avec un flux gazeux basique (amoniaque notamment) en circuit fermé. Ces traitements jouent un rôle essentiel au niveau de la durée de vie du catalyseur biologique car ils évitent l'accumulation d'acide chlorhydrique dans le biofiltre souvent responsable de l'inactivation du pouvoir dégradant. L'extension des études à d'autres polluants de la même famille a montré que la capacité de transformation du biofiltre solide/gaz est plus importante pour les composés halogénés qui possèdent une chaîne hydrogénocarbonée longue. Cette caractéristique notoire est très intéressante car ces composés sont généralement insolubles en milieu aqueux et posent donc de réels problèmes en milieu liquide classique.LA ROCHELLE-BU (173002101) / SudocSudocFranceF
    corecore