2 research outputs found

    NGTS clusters survey – IV. Search for Dipper stars in the Orion Nebular Cluster

    Full text link
    The dipper is a novel class of young stellar object associated with large drops in flux on the order of 10–50 per cent lasting for hours to days. Too significant to arise from intrinsic stellar variability, these flux drops are currently attributed to disc warps, accretion streams, and/or transiting circumstellar dust. Dippers have been previously studied in young star-forming regions, including the Orion Complex. Using Next Generation Transit Survey (NGTS) data, we identified variable stars from their light curves. We then applied a machine learning random forest classifier for the identification of new dipper stars in Orion using previous variable classifications as a training set. We discover 120 new dippers, of which 83 are known members of the Complex. We also investigated the occurrence rate of discs in our targets, again using a machine learning approach. We find that all dippers have discs, and most of these are full discs. We use dipper periodicity and model-derived stellar masses to identify the orbital distance to the inner disc edge for dipper objects, confirming that dipper stars exhibit strongly extended sublimation radii, adding weight to arguments that the inner disc edge is further out than predicted by simple models. Finally, we determine a dipper fraction (the fraction of stars with discs which are dippers) for known members of 27.8 ± 2.9 per cent. Our findings represent the largest population of dippers identified in a single cluster to date.</p

    NGTS-19b: a high-mass transiting brown dwarf in a 17-d eccentric orbit

    Full text link
    We present the discovery of NGTS-19b, a high mass transiting brown dwarf discovered by the Next Generation Transit Survey (NGTS). We investigate the system using follow up photometry from the South African Astronomical Observatory, as well as sector 11 TESS data, in combination with radial velocity measurements from the CORALIE spectrograph to precisely characterise the system. We find that NGTS-19b is a brown dwarf companion to a K-star, with a mass of 69.5−5.4+5.769.5 ^{+5.7}_{-5.4} MJup_{Jup} and radius of 1.034−0.053+0.0551.034 ^{+0.055}_{-0.053} RJup_{Jup}. The system has a reasonably long period of 17.84 days, and a high degree of eccentricity of 0.3767−0.0061+0.00610.3767 ^{+0.0061}_{-0.0061}. The mass and radius of the brown dwarf imply an age of 0.46−0.15+0.260.46 ^{+0.26}_{-0.15} Gyr, however this is inconsistent with the age determined from the host star SED, suggesting that the brown dwarf may be inflated. This is unusual given that its large mass and relatively low levels of irradiation would make it much harder to inflate. NGTS-19b adds to the small, but growing number of brown dwarfs transiting main sequence stars, and is a valuable addition as we begin to populate the so called brown dwarf desert
    corecore