21 research outputs found

    Radiological characteristics and diagnostic impact of duplicated right adrenal veins on adrenal venous sampling in primary aldosteronism

    Get PDF
    PURPOSEWe aimed to analyze the prevalence and radiological characteristics of duplicated right adrenal veins (DRAVs) and evaluate the diagnostic impact of adrenal venous sampling (AVS) in primary aldosteronism.METHODSDRAVs were retrospectively identified among patients who underwent segmental AVS between April 2017 and March 2020. DRAVs were defined as main or accessory according to the drainage area. The diameter, position, hormone levels, and treatment plan based on AVS were compared between main and accessory RAVs, using the Wilcoxon rank-sum test.RESULTSFourteen of 432 patients (3.2%) were diagnosed with DRAVs. On venography, the mean diameters of the main and accessory side were 3±0.63 mm and 2.1±0.41 mm, respectively, and were significantly different (p < 0.001). The mean relative position in craniocaudal direction of main and accessory veins from the adrenal caudal edge on computed tomography was 65.5%±16.0%, and 48.1%±16.8%, respectively, which was significantly different (p = 0.007). The left–right positions and hormone levels were not significantly different. Based on conventional AVS, the treatment plan between DRAVs was not changed in six of eight patients, but changed from surgery to medication in two patients with right aldosterone-producing adenoma (APA)/microadenoma based on segmental AVS findings.CONCLUSIONDRAVs, in which the main RAV was thicker and more cranially located than the accessory RAV were rare. Depending on blood sampled from either of DRAVs, the diagnosis made through conventional AVS might change treatment approach from surgery to medication, especially with right APA. Hence, their identification is important to make an accurate subtyping by AVS

    Cyclical and Patch-Like GDNF Distribution along the Basal Surface of Sertoli Cells in Mouse and Hamster Testes

    Get PDF
    BACKGROUND AND AIMS: In mammalian spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) is one of the major Sertoli cell-derived factors which regulates the maintenance of undifferentiated spermatogonia including spermatogonial stem cells (SSCs) through GDNF family receptor α1 (GFRα1). It remains unclear as to when, where and how GDNF molecules are produced and exposed to the GFRα1-positive spermatogonia in vivo. METHODOLOGY AND PRINCIPAL FINDINGS: Here we show the cyclical and patch-like distribution of immunoreactive GDNF-positive signals and their close co-localization with a subpopulation of GFRα1-positive spermatogonia along the basal surface of Sertoli cells in mice and hamsters. Anti-GDNF section immunostaining revealed that GDNF-positive signals are mainly cytoplasmic and observed specifically in the Sertoli cells in a species-specific as well as a seminiferous cycle- and spermatogenic activity-dependent manner. In contrast to the ubiquitous GDNF signals in mouse testes, high levels of its signals were cyclically observed in hamster testes prior to spermiation. Whole-mount anti-GDNF staining of the seminiferous tubules successfully visualized the cyclical and patch-like extracellular distribution of GDNF-positive granular deposits along the basal surface of Sertoli cells in both species. Double-staining of GDNF and GFRα1 demonstrated the close co-localization of GDNF deposits and a subpopulation of GFRα1-positive spermatogonia. In both species, GFRα1-positive cells showed a slender bipolar shape as well as a tendency for increased cell numbers in the GDNF-enriched area, as compared with those in the GDNF-low/negative area of the seminiferous tubules. CONCLUSION/SIGNIFICANCE: Our data provide direct evidence of regionally defined patch-like GDNF-positive signal site in which GFRα1-positive spermatogonia possibly interact with GDNF in the basal compartment of the seminiferous tubules

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The manner of decay of genetically defective EYS gene transcripts in photoreceptor-directed fibroblasts derived from retinitis pigmentosa patients depends on the type of mutation

    No full text
    Abstract Background Generation of induced photoreceptors holds promise for in vitro modeling of intractable retinal diseases. Retinitis pigmentosa is an inherited retinal dystrophy that leads to visual impairment. The EYS gene was reported to be the most common gene responsible for autosomal recessive retinitis pigmentosa (arRP). arRP with defects in the EYS gene is denoted by “EYS-RP”. We previously established a “redirect differentiation” method to generate photosensitive photoreceptor-like cells from commercially available human dermal fibroblasts. In this study, we produced photoreceptor-like cells from dermal fibroblasts of EYS-RP patients as a replacement for the degenerative retinas using “redirect differentiation”. We analyzed defective transcripts of the EYS gene in these cells to elucidate phenotypes of EYS-RP patients because decay of transcripts was previously suggested to be involved in phenotypic variation associated with diseases. Methods Using “redirect differentiation” by CRX, RAX, NeuroD and OTX2, we made photoreceptor-directed fibroblasts derived from three normal volunteers and three EYS-RP patients with homozygous or heterozygous mutations. We tested inducible expression of the photoreceptor-specific genes (blue opsin, rhodopsin, recoverin, S-antigen, PDE6C) in these cells. We then analyzed transcripts derived from three different types of the defective EYS gene, c.1211dupA, c.4957dupA and c.8805C > A, expressed in these cells by RT-PCR and sequencing. Results Photoreceptor-specific genes including the EYS gene were up-regulated in all the photoreceptor-directed fibroblasts tested. However, expression levels of defective transcripts were markedly different depending on the type of mutation. Transcripts derived from these three defective genes were scarcely detected, expressed at a lower level, and expressed at almost the same level as in normal volunteers, respectively. Conclusions Expression levels of genetically defective EYS gene transcripts in photoreceptor-directed fibroblasts of EYS-RP patients vary depending on the type of mutation. Variation in expression levels in transcripts having c.1211dupA, c.4957dupA and c.8805C > A suggests that almost complete nonsense-mediated mRNA decay (NMD), partial NMD and escape from NMD occurred for these transcripts, respectively. To determine the relationship with phenotypic variations in EYS-RP patients, more samples are needed. The present study also suggests that the redirect differentiation method could be a valuable tool for disease modeling despite some limitations
    corecore