5,412 research outputs found

    Derived Demand for Cattle Feeding Inputs

    Get PDF
    Derived demand relationships among four weight categories of feeder cattle entering Texas feedlots and feed were examined using a Generalized McFadden dual cost function specified as an error correction model. Relationships among own- and cross-price elasticities provide evidence for at least two cattle feeding enterprises, feeding lightweight feeder cattle (calves) and feeding heavier cattle. These results indicate systematic differences in demand relationships among the different weight classes, providing explanation and insight into mixed results from earlier studies. Seasonality differed across weight categories, providing additional support for multiple cattle feeding enterprises. A third step was added to the Engle-Granger two-step estimation procedure to incorporate information provided in the second step.Research Methods/ Statistical Methods,

    Derived Demand for Cattle Feeding Inputs

    Get PDF
    Derived demand relationships among four weight categories of feeder cattle entering Texas feedlots and their feed consumed are examined using a generalized McFadden dual cost function. Results demonstrate systematic differences in demand relationships among different weight categories. Positive cross-price elasticities among the three heaviest weight categories are consistent with input substitution among weight categories and consistent with objective functions associated with optimal placement weight. Anomalies in the form of negative cross-price elasticities between weight categories provide evidence for an alternative objective function associated with longer term feeding of light-weight feeder cattle. Results also demonstrate seasonality differences across weight categories.cattle feeding, derived demand, elasticity, feeder cattle, generalized McFadden cost function, Agribusiness, Demand and Price Analysis, Livestock Production/Industries,

    Rigorous Calculations of Non-Abelian Statistics in the Kitaev Honeycomb Model

    Get PDF
    We develop a rigorous and highly accurate technique for calculation of the Berry phase in systems with a quadratic Hamiltonian within the context of the Kitaev honeycomb lattice model. The method is based on the recently found solution of the model which uses the Jordan-Wigner-type fermionization in an exact effective spin-hardcore boson representation. We specifically simulate the braiding of two non-Abelian vortices (anyons) in a four vortex system characterized by a two-fold degenerate ground state. The result of the braiding is the non-Abelian Berry matrix which is in excellent agreement with the predictions of the effective field theory. The most precise results of our simulation are characterized by an error on the order of 10510^{-5} or lower. We observe exponential decay of the error with the distance between vortices, studied in the range from one to nine plaquettes. We also study its correlation with the involved energy gaps and provide preliminary analysis of the relevant adiabaticity conditions. The work allows to investigate the Berry phase in other lattice models including the Yao-Kivelson model and particularly the square-octagon model. It also opens the possibility of studying the Berry phase under non-adiabatic and other effects which may constitute important sources of errors in topological quantum computation.Comment: 27 pages, 9 figures, 3 appendice

    Revised Relativistic Hydrodynamical Model for Neutron-Star Binaries

    Full text link
    We report on numerical results from a revised hydrodynamic simulation of binary neutron-star orbits near merger. We find that the correction recently identified by Flanagan significantly reduces but does not eliminate the neutron-star compression effect. Although results of the revised simulations show that the compression is reduced for a given total orbital angular momentum, the inner most stable circular orbit moves to closer separation distances. At these closer orbits significant compression and even collapse is still possible prior to merger for a sufficiently soft EOS. The reduced compression in the corrected simulation is consistent with other recent studies of rigid irrotational binaries in quasiequilibrium in which the compression effect is observed to be small. Another significant effect of this correction is that the derived binary orbital frequencies are now in closer agreement with post-Newtonian expectations.Comment: Submitted to Phys. Rev.

    Late Decaying Dark Matter, Bulk Viscosity and the Cosmic Acceleration

    Full text link
    We discuss a cosmology in which cold dark matter begins to decay into relativistic particles at a recent epoch (z < 1). We show that the large entropy production and associated bulk viscosity from such decays leads to an accelerating cosmology as required by observations. We investigate the effects of decaying cold dark matter in a Lambda = 0, flat, initially matter dominated cosmology. We show that this model satisfies the cosmological constraint from the redshift-distance relation for type Ia supernovae. The age in such models is also consistent with the constraints from the oldest stars and globular clusters. Possible candidates for this late decaying dark matter are suggested along with additional observational tests of this cosmological paradigm.Comment: 8 pages, 3 figures, 1 tabl

    Computational Study of Halide Perovskite-Derived A2_2BX6_6 Inorganic Compounds: Chemical Trends in Electronic Structure and Structural Stability

    Full text link
    The electronic structure and energetic stability of A2_2BX6_6 halide compounds with the cubic and tetragonal variants of the perovskite-derived K2_2PtCl6_6 prototype structure are investigated computationally within the frameworks of density-functional-theory (DFT) and hybrid (HSE06) functionals. The HSE06 calculations are undertaken for seven known A2_2BX6_6 compounds with A = K, Rb and Cs, and B = Sn, Pd, Pt, Te, and X = I. Trends in band gaps and energetic stability are identified, which are explored further employing DFT calculations over a larger range of chemistries, characterized by A = K, Rb, Cs, B = Si, Ge, Sn, Pb, Ni, Pd, Pt, Se and Te and X = Cl, Br, I. For the systems investigated in this work, the band gap increases from iodide to bromide to chloride. Further, variations in the A site cation influences the band gap as well as the preferred degree of tetragonal distortion. Smaller A site cations such as K and Rb favor tetragonal structural distortions, resulting in a slightly larger band gap. For variations in the B site in the (Ni, Pd, Pt) group and the (Se, Te) group, the band gap increases with increasing cation size. However, no observed chemical trend with respect to cation size for band gap was found for the (Si, Sn, Ge, Pb) group. The findings in this work provide guidelines for the design of halide A2_2BX6_6 compounds for potential photovoltaic applications

    Self-Generated Magnetic Fields in Galactic Cooling Flows

    Get PDF
    Interstellar magnetic fields in elliptical galaxies are assumed to have their origin in stellar fields that accompany normal mass loss from an evolving population of old stars. The seed fields are amplified by interstellar turbulence driven by stellar mass loss and supernova events. These disordered fields are further amplified by time-dependent compression in the inward moving galactic cooling flow and are expected to dominate near the galactic core. Under favorable circumstances, fields similar in strength to those observed B110 (r/10 kpc)1.2μB \sim 1-10~(r/10~kpc)^{-1.2}\muG can be generated solely from these natural galactic processes. In general the interstellar field throughout elliptical galaxies is determined by the outermost regions in the interstellar gas where the turbulent dynamo process can occur. Because of the long hydrodynamic flow times in galactic cooling flows, currently observed magnetic fields may result from periods of intense turbulent field amplification that occurred in the outer galaxy in the distant past. Particularly strong fields in ellipticals may result from ancient galactic mergers or shear turbulence introduced at the boundary between the interstellar gas and ambient cluster gas.Comment: 21 pages in AASTEX LaTeX with 2 figures; accepted by Astrophysical Journa

    Maximizing Neumann fundamental tones of triangles

    Full text link
    We prove sharp isoperimetric inequalities for Neumann eigenvalues of the Laplacian on triangular domains. The first nonzero Neumann eigenvalue is shown to be maximal for the equilateral triangle among all triangles of given perimeter, and hence among all triangles of given area. Similar results are proved for the harmonic and arithmetic means of the first two nonzero eigenvalues

    Finite temperature effects on cosmological baryon diffusion and inhomogeneous Big-Bang nucleosynthesis

    Get PDF
    We have studied finite temperature corrections to the baryon transport cross sections and diffusion coefficients. These corrections are based upon the recently computed renormalized electron mass and the modified state density due to the background thermal bath in the early universe. It is found that the optimum nucleosynthesis yields computed using our diffusion coefficients shift to longer distance scales by a factor of about 3. We also find that the minimum value of 4He^4 He abundance decreases by ΔYp0.01\Delta Y_p \simeq 0.01 while DD and 7Li^7 Li increase. Effects of these results on constraints from primordial nucleosynthesis are discussed. In particular, we find that a large baryonic contribution to the closure density (\Omega_b h_{50}^{2} \lsim 0.4) may be allowed in inhomogeneous models corrected for finite temperature.Comment: 7 pages, 6 figures, submitted to Phys. Rev.
    corecore