4,031 research outputs found

    WIMP Dark Matter and the QCD Equation of State

    Get PDF
    Weakly Interacting Massive Particles (WIMPs) of mass m freeze out at a temperature T_f ~ m/25, i.e. in the range 400 MeV -- 40 GeV for a particle in the typical mass range 10 -- 1000 GeV. The WIMP relic density, which depends on the effective number of relativistic degrees of freedom at T_f, may be measured to better than 1% by Planck, warranting comparable theoretical precision. Recent theoretical and experimental advances in the understanding of high temperature QCD show that the quark gluon plasma departs significantly from ideal behaviour up to temperatures of several GeV, necessitating an improvement of the cosmological equation of state over those currently used. We discuss how this increases the relic density by approximately 1.5 -- 3.5% in benchmark mSUGRA models, with an uncertainly in the QCD corrections of 0.5 -- 1 %. We point out what further work is required to achieve a theoretical accuracy comparable with the expected observational precision, and speculate that the effective number of degrees of freedom at T_f may become measurable in the foreseeable future.Comment: 4pp, 2figs. More info including Matlab scripts used to generate equation of state curves at http://www.pact.cpes.sussex.ac.uk/arXiv/hep-ph/0501232

    Tunneling spectroscopy studies of aluminum oxide tunnel barrier layers

    Full text link
    We report scanning tunneling microscopy and ballistic electron emission microscopy studies of the electronic states of the uncovered and chemisorbed-oxygen covered surface of AlOx tunnel barrier layers. These states change when chemisorbed oxygen ions are moved into the oxide by either flood gun electron bombardment or by thermal annealing. The former, if sufficiently energetic, results in locally well defined conduction band onsets at ~1 V, while the latter results in a progressively higher local conduction band onset, exceeding 2.3 V for 500 and 600 C thermal anneals

    Extrapolation of Galactic Dust Emission at 100 Microns to CMBR Frequencies Using FIRAS

    Full text link
    We present predicted full-sky maps of submillimeter and microwave emission from the diffuse interstellar dust in the Galaxy. These maps are extrapolated from the 100 micron emission and 100/240 micron flux ratio maps that Schlegel, Finkbeiner, & Davis (1998; SFD98) generated from IRAS and COBE/DIRBE data. Results are presented for a number of physically plausible emissivity models. We find that no power law emissivity function fits the FIRAS data from 200 - 2100 GHz. In this paper we provide a formalism for a multi-component model for the dust emission. A two-component model with a mixture of silicate and carbon-dominated grains (motivated by Pollack et al., 1994}) provides a fit to an accuracy of about 15% to all the FIRAS data over the entire high-latitude sky. Small systematic differences are found between the atomic and molecular phases of the ISM. Our predictions for the thermal (vibrational) emission from Galactic dust at \nu < 3000 GHz are available for general use. These full-sky predictions can be made at the DIRBE resolution of 40' or at the higher resolution of 6.1 arcmin from the SFD98 DIRBE-corrected IRAS maps.Comment: 48 pages, AAS LaTeX, 6 figures, ApJ (accepted). Data described in the text, as well as 4 additional figures, are available at http://astro.berkeley.edu/dus

    A Low Noise Thermometer Readout for Ruthenium Oxide Resistors

    Get PDF
    The thermometer and thermal control system, for the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) experiment, is described, including the design, testing, and results from the first flight of ARCADE. The noise is equivalent to about 1 Omega or 0.15 mK in a second for the RuO_2 resistive thermometers at 2.7 K. The average power dissipation in each thermometer is 1 nW. The control system can take full advantage of the thermometers to maintain stable temperatures. Systematic effects are still under investigation, but the measured precision and accuracy are sufficient to allow measurement of the cosmic background spectrum. Journal-ref: Review of Scientific Instruments Vol 73 #10 (Oct 2002)Comment: 5 pages text 7 figure

    Constraining decaying dark energy density models with the CMB temperature-redshift relation

    Full text link
    We discuss the thermodynamic and dynamical properties of a variable dark energy model with density scaling as ρx(1+z)m\rho_x \propto (1+z)^{m}, z being the redshift. These models lead to the creation/disruption of matter and radiation, which affect the cosmic evolution of both matter and radiation components in the Universe. In particular, we have studied the temperature-redshift relation of radiation, which has been constrained using a recent collection of cosmic microwave background (CMB) temperature measurements up to z3z \sim 3. We find that, within the uncertainties, the model is indistinguishable from a cosmological constant which does not exchange any particles with other components. Future observations, in particular measurements of CMB temperature at large redshift, will allow to give firmer bounds on the effective equation of state parameter weffw_{eff} for such types of dark energy models.Comment: 9 pages, 1 figure, to appear in the Proceedings of the 3rd Italian-Pakistani Workshop on Relativistic Astrophysics, Lecce 20-22 June 2011, published in Journal of Physics: Conference Series (JPCS

    The Expected Rate of Gamma-Ray Burst Afterglows In Supernova Searches

    Get PDF
    We predict the rate at which Gamma-Ray Burst (GRB) afterglows should be detected in supernova searches as a function of limiting flux. Although GRB afterglows are rarer than supernovae, they are detectable at greater distances because of their higher intrinsic luminosity. Assuming that GRBs trace the cosmic star formation history and that every GRB gives rise to a bright afterglow, we find that the average detection rate of supernovae and afterglows should be comparable at limiting magnitudes brighter than K=18. The actual rate of afterglows is expected to be somewhat lower since only a fraction of all gamma-ray selected GRBs were observed to have associated afterglows. However, the rate could also be higher if the initial gamma-ray emission from GRB sources is more beamed than their late afterglow emission. Hence, current and future supernova searches can place strong constraints on the afterglow appearance fraction and the initial beaming angle of GRB sources.Comment: 13 pages, submitted to ApJ

    A new kind of Lax-Oleinik type operator with parameters for time-periodic positive definite Lagrangian systems

    Full text link
    In this paper we introduce a new kind of Lax-Oleinik type operator with parameters associated with positive definite Lagrangian systems for both the time-periodic case and the time-independent case. On one hand, the new family of Lax-Oleinik type operators with an arbitrary uC(M,R1)u\in C(M,\mathbb{R}^1) as initial condition converges to a backward weak KAM solution in the time-periodic case, while it was shown by Fathi and Mather that there is no such convergence of the Lax-Oleinik semigroup. On the other hand, the new family of Lax-Oleinik type operators with an arbitrary uC(M,R1)u\in C(M,\mathbb{R}^1) as initial condition converges to a backward weak KAM solution faster than the Lax-Oleinik semigroup in the time-independent case.Comment: We give a new definition of Lax-Oleinik type operator; add some reference

    Spectra of random Hermitian matrices with a small-rank external source: supercritical and subcritical regimes

    Get PDF
    Random Hermitian matrices with a source term arise, for instance, in the study of non-intersecting Brownian walkers \cite{Adler:2009a, Daems:2007} and sample covariance matrices \cite{Baik:2005}. We consider the case when the n×nn\times n external source matrix has two distinct real eigenvalues: aa with multiplicity rr and zero with multiplicity nrn-r. The source is small in the sense that rr is finite or r=O(nγ)r=\mathcal O(n^\gamma), for 0<γ<10< \gamma<1. For a Gaussian potential, P\'ech\'e \cite{Peche:2006} showed that for a|a| sufficiently small (the subcritical regime) the external source has no leading-order effect on the eigenvalues, while for a|a| sufficiently large (the supercritical regime) rr eigenvalues exit the bulk of the spectrum and behave as the eigenvalues of r×rr\times r Gaussian unitary ensemble (GUE). We establish the universality of these results for a general class of analytic potentials in the supercritical and subcritical regimes.Comment: 41 pages, 4 figure
    corecore