19 research outputs found

    Human CYP2E1 is regulated by miR-378.

    Get PDF
    金沢大学医薬保健研究域薬学系Human CYP2E1 is one of the pharmacologically and toxicologically important cytochrome P450 isoforms. Earlier studies have reported that the CYP2E1 expression is extensively regulated by post-transcriptional and post-translational mechanisms, but the molecular basis remains unclear. In the present study, we examined the possibility that microRNA may be involved in the post-transcriptional regulation of human CYP2E1. In silico analysis identified a potential recognition element of miR-378 (MRE378) in the 3\u27-untranslated region (UTR) of human CYP2E1 mRNA. Luciferase assays using HEK293 cells revealed that the reporter activity of the plasmid containing the MRE378 was decreased by co-transfection of precursor miR-378, indicating that miR-378 functionally recognized the MRE378. We established two HEK293 cell lines stably expressing human CYP2E1 including or excluding 3\u27-UTR. When the precursor miR-378 was transfected into the cells expressing human CYP2E1 including 3\u27-UTR, the CYP2E1 protein level and chlorzoxazone 6-hydroxylase activity were significantly decreased, but were not in the cells expressing CYP2E1 excluding 3\u27-UTR. In both cell lines, the CYP2E1 mRNA levels were decreased by overexpression of miR-378, but miR-378 did not affect the stability of CYP2E1 mRNA. In a panel of 25 human livers, no positive correlation was observed between the CYP2E1 protein and CYP2E1 mRNA levels, supporting the post-transcriptional regulation. Interestingly, the miR-378 levels were inversely correlated with the CYP2E1 protein levels and the translational efficiency of CYP2E1. In conclusion, we found that human CYP2E1 expression is regulated by miR-378, mainly via translational repression. This study could provide new insight into the unsolved mechanism of the post-transcriptional regulation of CYP2E1. Copyright 2009 Elsevier Inc. All rights reserved

    Aryl hydrocarbon receptor nuclear translocator in human liver is regulated by miR-24

    Get PDF
    Aryl hydrocarbon receptor nuclear translocator (ARNT) forms a heterodimer with aryl hydrocarbon receptor or hypoxia inducible factor 1α to mediate biological responses to xenobiotic exposure and hypoxia. Although the regulation mechanism of the ARNT expression is largely unknown, earlier studies reported that the human ARNT protein level was decreased by hydrogen peroxide or reactive oxygen species. These stimuli increase the miR-24 level in various human cell lines. In silico analysis predicts that some microRNAs including miR-16 and miR-23b may bind to ARNT mRNA. This background prompted us to investigate whether human ARNT is regulated by microRNAs. Overexpression of miR-24 into HuH-7 and HepG2 cells significantly decreased the ARNT protein level, but not the ARNT mRNA level, indicating translational repression. However, overexpression of miR-16 or miR-23b caused no change in the ARNT expression. The miR-24-dependent down-regulation of ARNT decreased the expression of its downstream genes such as CYP1A1 and carbonic anhydrase IX. Luciferase assay was performed to determine the element on the ARNT mRNA to which miR-24 binds. Finally, it was demonstrated that the miR-24 levels in a panel of 26 human livers were inversely correlated with the protein levels or the translational efficiency of ARNT. Taken together, we found that miR-24 negatively regulates ARNT expression in human liver, affecting the expression of its downstream genes. miR-24 would be one of the factors underlying the mechanisms by which ARNT protein is decreased by reactive oxygen species. © 2012 Elsevier Inc

    Retinoid X receptor α in human liver is regulated by miR-34a

    Get PDF
    Retinoid X receptor α (RXRα) forms a heterodimer with numerous nuclear receptors to regulate drug- or lipid-metabolizing enzymes. In this study, we investigated whether human RXRα is regulated by microRNAs. Two potential recognition elements of miR-34a were identified in the RXRα mRNA: one in the coding region and the other in the 3′-untranslated region (3′-UTR). Luciferase assays revealed that miR-34a recognizes the element in the coding region. The overexpression of miR-34a in HepG2 cells significantly decreased the endogenous RXRα protein and mRNA levels. The stability of RXRα mRNA was decreased by the overexpression of miR-34a, indicating that miR-34a negatively regulates RXRα expression by facilitating mRNA degradation. We found that the miR-34a-dependent down-regulation of RXRα decreases the induction of CYP26 and the transactivity of CYP3A4. miR-34a has been reported to be up-regulated by p53, which has an ability to promote liver fibrosis. The p53 activation resulted in an increase of the miR-34a level and a decrease of the RXRα protein level. In addition, the miR-34a levels in eight fibrotic livers were higher than those in six normal livers, and the reverse trend was found for the RXRα protein levels. An inverse correlation was observed between the miR-34a and the RXRα protein levels in the 14 samples. Taken together, the data show that miR-34a negatively regulates RXRα expression in human liver, and affects the expression of its downstream genes. This miR-34a-dependent regulation might be the underlying mechanism responsible for the decreased expression of the RXRα protein in fibrotic livers. © 2014 Elsevier Inc

    RNA編集によるヒト芳香族炭化水素受容体およびジヒドロ葉酸還元酵素の発現制御

    No full text
    博士論文要旨Abstract 以下に掲載:1.Journal of Biological Chemistry 291(2) pp.894-901 2017. American Society for Biochemistry and Molecular Biology 共著者:Masataka Nakano, Tatsuki Fukami, Saki Gotoh, Masataka Takamiya, Yasuhiro Aoki, Miki Nakajima 2.Journal of Biological Chemistry inpress. American Society for Biochemistry and Molecular Biology 共著者:Masataka Nakano, Tatsuki Fukami, Saki Gotoh, Miki Nakajim

    Human Arylacetamide Deacetylase Is a Principal Enzyme in Flutamide Hydrolysis

    No full text
    corecore