4 research outputs found

    CRISPR/Cas9-generated mouse model with humanizing single-base substitution in the Gnao1 for safety studies of RNA therapeutics

    Get PDF
    The development of personalized medicine for genetic diseases requires preclinical testing in the appropriate animal models. GNAO1 encephalopathy is a severe neurodevelopmental disorder caused by heterozygous de novo mutations in the GNAO1 gene. GNAO1 c.607 G>A is one of the most common pathogenic variants, and the mutant protein Gαo-G203R likely adversely affects neuronal signaling. As an innovative approach, sequence-specific RNA-based therapeutics such as antisense oligonucleotides or effectors of RNA interference are potentially applicable for selective suppression of the mutant GNAO1 transcript. While in vitro validation can be performed in patient-derived cells, a humanized mouse model to rule out the safety of RNA therapeutics is currently lacking. In the present work, we employed CRISPR/Cas9 technology to introduce a single-base substitution into exon 6 of the Gnao1 to replace the murine Gly203-coding triplet (GGG) with the codon used in the human gene (GGA). We verified that genome-editing did not interfere with the Gnao1 mRNA or Gαo protein synthesis and did not alter localization of the protein in the brain structures. The analysis of blastocysts revealed the off-target activity of the CRISPR/Cas9 complexes; however, no modifications of the predicted off-target sites were detected in the founder mouse. Histological staining confirmed the absence of abnormal changes in the brain of genome-edited mice. The created mouse model with the “humanized” fragment of the endogenous Gnao1 is suitable to rule out unintended targeting of the wild-type allele by RNA therapeutics directed at lowering GNAO1 c.607 G>A transcripts

    Mengovirus-Induced Rearrangement of the Nuclear Pore Complex: Hijacking Cellular Phosphorylation Machineryâ–ż

    Get PDF
    Representatives of several picornavirus genera have been shown previously to significantly enhance noncontrollable bidirectional exchange of proteins between nuclei and cytoplasm. In enteroviruses and rhinoviruses, enhanced permeabilization of the nuclear pores appears to be primarily due to proteolytic degradation of some nucleoporins (protein components of the pore), whereas this effect in cardiovirus-infected cells is triggered by the leader (L) protein, devoid of any enzymatic activities. Here, we present evidence that expression of L alone was sufficient to cause permeabilization of the nuclear envelope in HeLa cells. In contrast to poliovirus, mengovirus infection of these cells did not elicit loss of nucleoporins Nup62 and Nup153 from the nuclear pore complex. Instead, nuclear envelope permeabilization was accompanied by hyperphosphorylation of Nup62 in cells infected with wild-type mengovirus, whereas both of these alterations were suppressed in L-deficient virus mutants. Since phosphorylation of Nup62 (although less prominent) did accompany permeabilization of the nuclear envelope prior to its mitotic disassembly in uninfected cells, we hypothesize that cardiovirus L alters the nucleocytoplasmic traffic by hijacking some components of the normal cell division machinery. The variability and biological significance of picornaviral interactions with the nucleocytoplasmic transport in the infected cells are discussed

    Nucleocytoplasmic Traffic Disorder Induced by Cardioviruses

    Get PDF
    Some picornaviruses, for example, poliovirus, increase bidirectional permeability of the nuclear envelope and suppress active nucleocytoplasmic transport. These activities require the viral protease 2A(pro). Here, we studied nucleocytoplasmic traffic in cells infected with encephalomyocarditis virus (EMCV; a cardiovirus), which lacks the poliovirus 2A(pro)-related protein. EMCV similarly enhanced bidirectional nucleocytoplasmic traffic. By using the fluorescent “Timer” protein, which contains a nuclear localization signal, we showed that the cytoplasmic accumulation of nuclear proteins in infected cells was largely due to the nuclear efflux of “old” proteins rather than impaired active nuclear import of newly synthesized molecules. The nuclear envelope of digitonin-treated EMCV-infected cells permitted rapid efflux of a nuclear marker protein. Inhibitors of poliovirus 2A(pro) did not prevent the EMCV-induced efflux. Extracts from EMCV-infected cells and products of in vitro translation of viral RNAs contained an activity increasing permeability of the nuclear envelope of uninfected cells. This activity depended on the expression of the viral leader protein. Mutations disrupting the zinc finger motif of this protein abolished its efflux-inducing ability. Inactivation of the L protein phosphorylation site (Thr47→Ala) resulted in a delayed efflux, while a phosphorylation-mimicking (Thr47→Asp) replacement did not significantly impair the efflux-inducing ability. Such activity of extracts from EMCV-infected cells was suppressed by the protein kinase inhibitor staurosporine. As evidenced by electron microscopy, cardiovirus infection resulted in alteration of the nuclear pores, but it did not trigger degradation of the nucleoporins known to be degraded in the poliovirus-infected cells. Thus, two groups of picornaviruses, enteroviruses and cardioviruses, similarly alter the nucleocytoplasmic traffic but achieve this by strikingly different mechanisms
    corecore