3 research outputs found

    Synthesis, Characterization, and Reactivity of Fe Complexes Containing Cyclic Diazadiphosphine Ligands: The Role of the Pendant Base in Heterolytic Cleavage of H<sub>2</sub>

    No full text
    The iron complexes CpFe­(P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub>)Cl (<b>1-Cl</b>), CpFe­(P<sup>Ph</sup><sub>2</sub>N<sup>Ph</sup><sub>2</sub>)Cl (<b>2-Cl</b>), and CpFe­(P<sup>Ph</sup><sub>2</sub>C<sub>5</sub>)Cl (<b>3-Cl</b>) (where P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub> is 1,5-dibenzyl-1,5-diaza-3,7-diphenyl-3,7-diphosphacyclooctane, P<sup>Ph</sup><sub>2</sub>N<sup>Ph</sup><sub>2</sub> is 1,3,5,7-tetraphenyl-1,5-diaza-3,7-diphosphacyclooctane, and P<sup>Ph</sup><sub>2</sub>C<sub>5</sub> is 1,4-diphenyl-1,4-diphosphacycloheptane) have been synthesized and characterized by NMR spectroscopy, electrochemical studies, and X-ray diffraction. These chloride derivatives are readily converted to the corresponding hydride complexes [CpFe­(P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub>)H (<b>1-H</b>), CpFe­(P<sup>Ph</sup><sub>2</sub>N<sup>Ph</sup><sub>2</sub>)H (<b>2-H</b>), CpFe­(P<sup>Ph</sup><sub>2</sub>C<sub>5</sub>)H (<b>3-H</b>)] and H<sub>2</sub> complexes [CpFe­(P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub>)­(H<sub>2</sub>)]­BAr<sup>F</sup><sub>4</sub>, <b>[1-H</b><sub><b>2</b></sub><b>]­BAr</b><sup><b>F</b></sup><sub><b>4</b></sub>, (where BAr<sup>F</sup><sub>4</sub> is B­[(3,5-(CF<sub>3</sub>)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sub>4</sub>]<sup>−</sup>), [CpFe­(P<sup>Ph</sup><sub>2</sub>N<sup>Ph</sup><sub>2</sub>)­(H<sub>2</sub>)]­BAr<sup>F</sup><sub>4</sub>, <b>[2-H</b><sub><b>2</b></sub><b>]­BAr</b><sup><b>F</b></sup><sub><b>4</b></sub>, and [CpFe­(P<sup>Ph</sup><sub>2</sub>C<sub>5</sub>)­(H<sub>2</sub>)]­BAr<sup>F</sup><sub>4</sub>, <b>[3-H</b><sub><b>2</b></sub><b>]­BAr</b><sup><b>F</b></sup><sub><b>4</b></sub>, as well as [CpFe­(P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub>)­(CO)]­BAr<sup>F</sup><sub>4</sub>, <b>[1-CO]­Cl</b>. Structural studies are reported for <b>[1-H</b><sub><b>2</b></sub><b>]­BAr</b><sup><b>F</b></sup><sub><b>4</b></sub>, <b>1-H</b>, <b>2-H</b>, and <b>[1-CO]­Cl</b>. The conformations adopted by the chelate rings of the P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub> ligand in the different complexes are determined by attractive or repulsive interactions between the sixth ligand of these pseudo-octahedral complexes and the pendant N atom of the ring adjacent to the sixth ligand. An example of an attractive interaction is the observation that the distance between the N atom of the pendant amine and the C atom of the coordinated CO ligand for <b>[1-CO]­BAr</b><sup><b>F</b></sup><sub><b>4</b></sub> is 2.848 Å, considerably shorter than the sum of the van der Waals radii of N and C atoms. Studies of H/D exchange by the complexes <b>[1-H</b><sub><b>2</b></sub><b>]</b><sup><b>+</b></sup>, <b>[2-H</b><sub><b>2</b></sub><b>]</b><sup><b>+</b></sup>, and <b>[3-H</b><sub><b>2</b></sub><b>]</b><sup><b>+</b></sup> carried out using H<sub>2</sub> and D<sub>2</sub> indicate that the relatively rapid H/D exchange observed for <b>[1-H</b><sub><b>2</b></sub><b>]</b><sup><b>+</b></sup> and <b>[2-H</b><sub><b>2</b></sub><b>]</b><sup><b>+</b></sup> compared to <b>[3-H</b><sub><b>2</b></sub><b>]</b><sup><b>+</b></sup> is consistent with intramolecular heterolytic cleavage of H<sub>2</sub> mediated by the pendant amine. Computational studies indicate a low barrier for heterolytic cleavage of H<sub>2</sub>. These mononuclear Fe<sup>II</sup> dihydrogen complexes containing pendant amines in the ligands mimic crucial features of the distal Fe site of the active site of the [FeFe]-hydrogenase required for H–H bond formation and cleavage

    Synthesis, Characterization, and Reactivity of Fe Complexes Containing Cyclic Diazadiphosphine Ligands: The Role of the Pendant Base in Heterolytic Cleavage of H<sub>2</sub>

    No full text
    The iron complexes CpFe­(P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub>)Cl (<b>1-Cl</b>), CpFe­(P<sup>Ph</sup><sub>2</sub>N<sup>Ph</sup><sub>2</sub>)Cl (<b>2-Cl</b>), and CpFe­(P<sup>Ph</sup><sub>2</sub>C<sub>5</sub>)Cl (<b>3-Cl</b>) (where P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub> is 1,5-dibenzyl-1,5-diaza-3,7-diphenyl-3,7-diphosphacyclooctane, P<sup>Ph</sup><sub>2</sub>N<sup>Ph</sup><sub>2</sub> is 1,3,5,7-tetraphenyl-1,5-diaza-3,7-diphosphacyclooctane, and P<sup>Ph</sup><sub>2</sub>C<sub>5</sub> is 1,4-diphenyl-1,4-diphosphacycloheptane) have been synthesized and characterized by NMR spectroscopy, electrochemical studies, and X-ray diffraction. These chloride derivatives are readily converted to the corresponding hydride complexes [CpFe­(P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub>)H (<b>1-H</b>), CpFe­(P<sup>Ph</sup><sub>2</sub>N<sup>Ph</sup><sub>2</sub>)H (<b>2-H</b>), CpFe­(P<sup>Ph</sup><sub>2</sub>C<sub>5</sub>)H (<b>3-H</b>)] and H<sub>2</sub> complexes [CpFe­(P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub>)­(H<sub>2</sub>)]­BAr<sup>F</sup><sub>4</sub>, <b>[1-H</b><sub><b>2</b></sub><b>]­BAr</b><sup><b>F</b></sup><sub><b>4</b></sub>, (where BAr<sup>F</sup><sub>4</sub> is B­[(3,5-(CF<sub>3</sub>)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sub>4</sub>]<sup>−</sup>), [CpFe­(P<sup>Ph</sup><sub>2</sub>N<sup>Ph</sup><sub>2</sub>)­(H<sub>2</sub>)]­BAr<sup>F</sup><sub>4</sub>, <b>[2-H</b><sub><b>2</b></sub><b>]­BAr</b><sup><b>F</b></sup><sub><b>4</b></sub>, and [CpFe­(P<sup>Ph</sup><sub>2</sub>C<sub>5</sub>)­(H<sub>2</sub>)]­BAr<sup>F</sup><sub>4</sub>, <b>[3-H</b><sub><b>2</b></sub><b>]­BAr</b><sup><b>F</b></sup><sub><b>4</b></sub>, as well as [CpFe­(P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub>)­(CO)]­BAr<sup>F</sup><sub>4</sub>, <b>[1-CO]­Cl</b>. Structural studies are reported for <b>[1-H</b><sub><b>2</b></sub><b>]­BAr</b><sup><b>F</b></sup><sub><b>4</b></sub>, <b>1-H</b>, <b>2-H</b>, and <b>[1-CO]­Cl</b>. The conformations adopted by the chelate rings of the P<sup>Ph</sup><sub>2</sub>N<sup>Bn</sup><sub>2</sub> ligand in the different complexes are determined by attractive or repulsive interactions between the sixth ligand of these pseudo-octahedral complexes and the pendant N atom of the ring adjacent to the sixth ligand. An example of an attractive interaction is the observation that the distance between the N atom of the pendant amine and the C atom of the coordinated CO ligand for <b>[1-CO]­BAr</b><sup><b>F</b></sup><sub><b>4</b></sub> is 2.848 Å, considerably shorter than the sum of the van der Waals radii of N and C atoms. Studies of H/D exchange by the complexes <b>[1-H</b><sub><b>2</b></sub><b>]</b><sup><b>+</b></sup>, <b>[2-H</b><sub><b>2</b></sub><b>]</b><sup><b>+</b></sup>, and <b>[3-H</b><sub><b>2</b></sub><b>]</b><sup><b>+</b></sup> carried out using H<sub>2</sub> and D<sub>2</sub> indicate that the relatively rapid H/D exchange observed for <b>[1-H</b><sub><b>2</b></sub><b>]</b><sup><b>+</b></sup> and <b>[2-H</b><sub><b>2</b></sub><b>]</b><sup><b>+</b></sup> compared to <b>[3-H</b><sub><b>2</b></sub><b>]</b><sup><b>+</b></sup> is consistent with intramolecular heterolytic cleavage of H<sub>2</sub> mediated by the pendant amine. Computational studies indicate a low barrier for heterolytic cleavage of H<sub>2</sub>. These mononuclear Fe<sup>II</sup> dihydrogen complexes containing pendant amines in the ligands mimic crucial features of the distal Fe site of the active site of the [FeFe]-hydrogenase required for H–H bond formation and cleavage

    Studies of a Series of [Ni(P<sup>R</sup><sub>2</sub>N<sup>Ph</sup><sub>2</sub>)<sub>2</sub>(CH<sub>3</sub>CN)]<sup>2+</sup> Complexes as Electrocatalysts for H<sub>2</sub> Production: Substituent Variation at the Phosphorus Atom of the P<sub>2</sub>N<sub>2</sub> Ligand

    No full text
    A series of [Ni(P<sup>R</sup><sub>2</sub>N<sup>Ph</sup><sub>2</sub>)<sub>2</sub>(CH<sub>3</sub>CN)](BF<sub>4</sub>)<sub>2</sub> complexes containing the cyclic diphosphine ligands [P<sup>R</sup><sub>2</sub>N<sup>Ph</sup><sub>2</sub> = 1,5-diaza-3,7-diphosphacyclooctane; R = benzyl (Bn), <i>n</i>-butyl (<i>n-</i>Bu), 2-phenylethyl (PE), 2,4,4-trimethylpentyl (TP), and cyclohexyl (Cy)] have been synthesized and characterized. X-ray diffraction studies reveal that the cations of [Ni(P<sup>Bn</sup><sub>2</sub>N<sup>Ph</sup><sub>2</sub>)<sub>2</sub>(CH<sub>3</sub>CN)](BF<sub>4</sub>)<sub>2</sub> and [Ni(P<sup><i>n</i>‑Bu</sup><sub>2</sub>N<sup>Ph</sup><sub>2</sub>)<sub>2</sub>(CH<sub>3</sub>CN)](BF<sub>4</sub>)<sub>2</sub> have distorted trigonal bipyramidal geometries. The Ni(0) complex [Ni(P<sup>Bn</sup><sub>2</sub>N<sup>Ph</sup><sub>2</sub>)<sub>2</sub>] was also synthesized and characterized by X-ray diffraction studies and shown to have a distorted tetrahedral structure. These complexes, with the exception of [Ni(P<sup>Cy</sup><sub>2</sub>N<sup>Ph</sup><sub>2</sub>)<sub>2</sub>(CH<sub>3</sub>CN)](BF<sub>4</sub>)<sub>2</sub>, all exhibit reversible electron transfer processes for both the Ni(II/I) and Ni(I/0) couples and are electrocatalysts for the production of H<sub>2</sub> in acidic acetonitrile solutions. The heterolytic cleavage of H<sub>2</sub> by [Ni(P<sup>R</sup><sub>2</sub>N<sup>Ph</sup><sub>2</sub>)<sub>2</sub>(CH<sub>3</sub>CN)](BF<sub>4</sub>)<sub>2</sub> complexes in the presence of <i>p</i>-anisidine or <i>p</i>-bromoaniline was used to determine the hydride donor abilities of the corresponding [HNi(P<sup>R</sup><sub>2</sub>N<sup>Ph</sup><sub>2</sub>)<sub>2</sub>](BF<sub>4</sub>) complexes. However, for the catalysts with the most bulky R groups, the turnover frequencies do not parallel the driving force for elimination of H<sub>2</sub>, suggesting that steric interactions between the alkyl substituents on phosphorus and the nitrogen atom of the pendant amines play an important role in determining the overall catalytic rate
    corecore