17 research outputs found

    A commercialized dietary supplement alleviates joint pain in community adults: a double-blind, placebo-controlled community trial

    Get PDF
    BACKGROUND: The purpose of this study was to assess the effect of 8-weeks ingestion of a commercialized joint pain dietary supplement (InstaflexTM Joint Support, Direct Digital, Charlotte, NC) compared to placebo on joint pain, stiffness, and function in adults with self-reported joint pain. InstaflexTM is a joint pain supplement containing glucosamine sulfate, methylsufonlylmethane (MSM), white willow bark extract (15% salicin), ginger root concentrate, boswella serrata extract (65% boswellic acid), turmeric root extract, cayenne, and hyaluronic acid. METHODS: Subjects included 100 men and women, ages 50-75 years, with a history (>3 months) of joint pain, and were randomized to Instaflex™ or placebo (3 colored gel capsules per day for 8 weeks, double-blind administration). Subjects agreed to avoid the use of non-steroidal anti-inflammatory drugs (NSAID) and all other medications and supplements targeted for joint pain. Primary outcome measures were obtained pre- and post-study and included joint pain severity, stiffness, and function (Western Ontario and McMaster Universities [WOMAC]), and secondary outcome measures included health-related quality of life (Short Form 36 or SF-36), systemic inflammation (serum C-reactive protein and 9 plasma cytokines), and physical function (6-minute walk test). Joint pain symptom severity was assessed bi-weekly using a 12-point Likert visual scale (12-VS). RESULTS: Joint pain severity was significantly reduced in Instaflex™ compared to placebo (8-week WOMAC, ↓37% versus ↓16%, respectively, interaction effect P = 0.025), with group differences using the 12-VS emerging by week 4 of the study (interaction effect, P = 0.0125). Improvements in ability to perform daily activities and stiffness scores in Instaflex™ compared to placebo were most evident for the 74% of subjects reporting knee pain (8-week WOMAC function score, ↓39% versus ↓14%, respectively, interaction effect P = 0.027; stiffness score, ↓30% versus ↓12%, respectively, interaction effect P = 0.081). Patterns of change in SF-36, systemic inflammation biomarkers, and the 6-minute walk test did not differ significantly between groups during the 8-week study CONCLUSIONS: Results from this randomized, double blind, placebo-controlled community trial support the use of the Instaflex™ dietary supplement in alleviating joint pain severity in middle-aged and older adults, with mitigation of difficulty performing daily activities most apparent in subjects with knee pain. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT0195650

    A Mixed Flavonoid-Fish Oil Supplement Induces Immune-Enhancing and Anti-Inflammatory Transcriptomic Changes in Adult Obese and Overweight Women—A Randomized Controlled Trial

    No full text
    Flavonoids and fish oils have anti-inflammatory and immune-modulating influences. The purpose of this study was to determine if a mixed flavonoid-fish oil supplement (Q-Mix; 1000 mg quercetin, 400 mg isoquercetin, 120 mg epigallocatechin (EGCG) from green tea extract, 400 mg n3-PUFAs (omega-3 polyunsaturated fatty acid) (220 mg eicosapentaenoic acid (EPA) and 180 mg docosahexaenoic acid (DHA)) from fish oil, 1000 mg vitamin C, 40 mg niacinamide, and 800 µg folic acid) would reduce complications associated with obesity; that is, reduce inflammatory and oxidative stress markers and alter genomic profiles in overweight women. Overweight and obese women (n = 48; age = 40–70 years) were assigned to Q-Mix or placebo groups using randomized double-blinded placebo-controlled procedures. Overnight fasted blood samples were collected at 0 and 10 weeks and analyzed for cytokines, C-reactive protein (CRP), F2-isoprostanes, and whole-blood-derived mRNA, which was assessed using Affymetrix HuGene-1_1 ST arrays. Statistical analysis included two-way ANOVA models for blood analytes and gene expression and pathway and network enrichment methods for gene expression. Plasma levels increased with Q-Mix supplementation by 388% for quercetin, 95% for EPA, 18% for DHA, and 20% for docosapentaenoic acid (DPA). Q-Mix did not alter plasma levels for CRP (p = 0.268), F2-isoprostanes (p = 0.273), and cytokines (p > 0.05). Gene set enrichment analysis revealed upregulation of pathways in Q-Mix vs. placebo related to interferon-induced antiviral mechanism (false discovery rate, FDR < 0.001). Overrepresentation analysis further disclosed an inhibition of phagocytosis-related inflammatory pathways in Q-Mix vs. placebo. Thus, a 10-week Q-Mix supplementation elicited a significant rise in plasma quercetin, EPA, DHA, and DPA, as well as stimulated an antiviral and inflammation whole-blood transcriptomic response in overweight women

    Metabolomics-Based Analysis of Banana and Pear Ingestion on Exercise Performance and Recovery

    No full text
    Bananas and pears vary in sugar and phenolic profiles, and metabolomics was utilized to measure their influence on exercise performance and recovery. Male athletes (N = 20) cycled for 75 km while consuming water (WATER), bananas (BAN), or pears (PEAR) (0.6 g carbohydrate/kg each hour) in randomized order. UPLC-MS/MS and the library of purified standards maintained by Metabolon (Durham, NC) were used to analyze metabolite shifts in pre- and postexercise (0-h, 1.5-h, 21-h) blood samples. Performance times were 5.0% and 3.3% faster during BAN and PEAR versus WATER (P = 0.018 and P = 0.091, respectively), with reductions in cortisol, IL-10, and total leukocytes, and increases in blood glucose, insulin, and FRAP. Partial Least Square Discriminant Analysis (PLS-DA) showed a distinct separation between trials immediately (R<sup>2</sup>Y = 0.877, Q<sup>2</sup>Y = 0.457) and 1.5-h postexercise (R<sup>2</sup>Y = 0.773, Q<sup>2</sup>Y = 0.441). A total of 107 metabolites (primarily lipid-related) increased more than 2-fold during WATER, with a 48% and 52% reduction in magnitude during BAN and PEAR recovery (<i>P</i> < 0.001). Increases in metabolites unique to BAN and PEAR included fructose and fruit constituents, and sulfated phenolics that were related to elevated FRAP. These data indicate that BAN and PEAR ingestion improves 75-km cycling performance, attenuates fatty acid utilization and oxidation, and contributes unique phenolics that augment antioxidant capacity

    Influence of Pistachios on Performance and Exercise-Induced Inflammation, Oxidative Stress, Immune Dysfunction, and Metabolite Shifts in Cyclists: A Randomized, Crossover Trial

    No full text
    <div><p>Objectives</p><p>Pistachio nut ingestion (3 oz./d, two weeks) was tested for effects on exercise performance and 21-h post-exercise recovery from inflammation, oxidative stress, immune dysfunction, and metabolite shifts.</p><p>Methods</p><p>Using a randomized, crossover approach, cyclists (N = 19) engaged in two 75-km time trials after 2-weeks pistachio or no pistachio supplementation, with a 2-week washout period. Subjects came to the lab in an overnight fasted state, and ingested water only or 3 oz. pistachios with water before and during exercise. Blood samples were collected 45 min pre-exercise, and immediately post-, 1.5-h post-, and 21-h post-exercise, and analyzed for plasma cytokines, C-reactive protein (CRP), F<sub>2</sub>-isoprostanes (F<sub>2</sub>-IsoP), granulocyte phagocytosis (GPHAG) and oxidative burst activity (GOBA), and shifts in metabolites.</p><p>Results</p><p>Performance time for the 75-km time trial was 4.8% slower under pistachio conditions (2.84±0.11 and 2.71±0.07 h, respectively, P = 0.034). Significant time effects were shown for plasma cytokines, CRP, F<sub>2</sub>-IsoP, GPHAG, and GOBA, with few group differences. Metabolomics analysis revealed 423 detectable compounds of known identity, with significant interaction effects for 19 metabolites, especially raffinose, (12Z)-9,10-Dihydroxyoctadec-12-enoate (9,10-DiHOME), and sucrose. Dietary intake of raffinose was 2.19±0.15 and 0.35±0.08 mg/d during the pistachio and no pistachio periods, and metabolomics revealed that colon raffinose and sucrose translocated to the circulation during exercise due to increased gut permeability. The post-exercise increase in plasma raffinose correlated significantly with 9,10-DiHOME and other oxidative stress metabolites.</p><p>Conclusions</p><p>In summary, 2-weeks pistachio nut ingestion was associated with reduced 75-km cycling time trial performance and increased post-exercise plasma levels of raffinose, sucrose, and metabolites related to leukotoxic effects and oxidative stress.</p><p>Trial Registration</p><p>ClinicalTrials.gov <a href="http://clinicaltrials.gov/ct2/show/NCT01821820?term=NCT01821820&rank=1" target="_blank">NCT01821820</a></p></div

    Metabolic and performance data during the 75-km cycling trials under pistachio and water conditions in trained cyclists (N = 19) (mean±SE).

    No full text
    <p>VO<sub>2</sub>, volume of oxygen consumed; HR, heart rate; RPE, rating of perceived exertion; RER, respiratory exchange ratio (VCO<sub>2</sub>/VO<sub>2</sub>).</p><p>Metabolic and performance data during the 75-km cycling trials under pistachio and water conditions in trained cyclists (N = 19) (mean±SE).</p
    corecore