8 research outputs found

    Exact solution of electronic transport in semiconductors dominated by scattering on polaronic impurities

    Full text link
    The scattering of electrons on impurities with internal degrees of freedom is bound to produce the signatures of the scatterer's own dynamics and results in nontrivial electronic transport properties. Previous studies of polaronic impurities in low-dimensional structures, like molecular junctions and one-dimensional nanowire models, have shown that perturbative treatments cannot account for a complex energy dependence of the scattering cross section in such systems. Here we derive the exact solution of polaronic impurities shaping the electronic transport in bulk (3D) systems. In the model with a short-ranged electron-phonon interaction, we solve for and sum over all elastic and inelastic partial cross sections, abundant in resonant features. The temperature dependence of the charge mobility shows the power-law dependence, μ(T)Tν\mu(T)\propto T^{-\nu}, with ν\nu being highly sensitive to impurity parameters. The latter may explain nonuniversal power-law exponents observed experimentally, e.g. in high-quality organic molecular semiconductors.Comment: 5 pages, 6 figure

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201
    corecore