59 research outputs found

    Modulation of Gamma-Band Activity Across Local Cortical Circuits

    Get PDF
    Periodic activity patterns or oscillations within the gamma frequency band (20–80 Hz) have been implicated in sensory processing and cognition in many areas of the cerebral cortex, including primary visual cortex (V1). Although periodic activity appears to be a hallmark of cortical neurons, little is known about the dynamics of these activity patterns as signals progress within local cortical circuits. This study compares the strength of periodic activity between neurons in the input and output stages of cortical processing – neurons in layers 4 and 6 – of V1 in the alert macaque monkey. Our results demonstrate that while both populations of neurons display significant gamma-band activity, this activity increases from the input to output layers of the cortex. These data suggest that local cortical circuits enhance periodic activity within a cortical area

    Patterned Activity within the Local Cortical Architecture

    Get PDF
    The cerebral cortex is a vastly complex structure consisting of multiple distinct populations of neurons residing in functionally specialized cortical compartments. A fundamental goal in systems neuroscience is to understand the interactions among cortical neurons and their relationship to behavior. It is hypothesized that dynamic activity patterns, such as oscillations in global neuronal activity, could span large, heterogeneous populations of cortical neurons in such a manner as to bind together the activity of otherwise disparate cortical networks. Little is known about the mechanisms by which such global oscillatory patterns entrain cortical networks, or the contribution of such activity patterns to cortical function. An important step toward elucidating the role of such patterned activity in cortical information processing is understanding these interactions at the local circuit level. Here, we highlight recent findings that provide insight into how dynamic activity patterns affect specific neuronal populations and circuits

    Retinal oscillations carry visual information to cortex

    Get PDF
    Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, however, is only one factor that influences neural activity. For example, intrinsic dynamics, such as oscillations of networks of neurons, also modulate firing pattern. Here, we asked if retinal oscillations might help to convey information to neurons downstream. Specifically, we made whole-cell recordings from relay cells to reveal retinal inputs (EPSPs) and thalamic outputs (spikes) and analyzed these events with information theory. Our results show that thalamic spike trains operate as two multiplexed channels. One channel, which occupies a low frequency band (<30 Hz), is encoded by average firing rate with respect to the stimulus and carries information about local changes in the image over time. The other operates in the gamma frequency band (40-80 Hz) and is encoded by spike time relative to the retinal oscillations. Because these oscillations involve extensive areas of the retina, it is likely that the second channel transmits information about global features of the visual scene. At times, the second channel conveyed even more information than the first.Comment: 21 pages, 10 figures, submitted to Frontiers in Systems Neuroscienc

    Preparatory Effects of Distractor Suppression: Evidence from Visual Cortex

    Get PDF
    Spatial selective attention is the mechanism that facilitates the selection of relevant information over irrelevant information in the visual field. The current study investigated whether foreknowledge of the presence or absence of distractors surrounding an impending target stimulus results in preparatory changes in visual cortex. We cued the location of the target and the presence or absence of distractors surrounding the target while changes in blood oxygen level dependent (BOLD) signals were measured. In line with prior work, we found that top-down spatial attention resulted in an increased contralateral BOLD response, evoked by the cue throughout early visual cortex (areas V1, V2 and V3). In addition, cues indicating distractor presence evoked a substantial increase in the magnitude of the BOLD signal in visual area V3, but not in V2 or V1. This study shows that prior knowledge concerning the presence of a distractor results in enhanced attentional modulation of visual cortex, in visual areas where neuronal receptive fields are large enough to encompass both targets and distractors. We interpret these findings as evidence that top-down attentional control processes include active preparatory suppression mechanisms for irrelevant, distracting information in the visual scene

    Cortical activity influences geniculocortical spike efficacy in the macaque monkey

    Get PDF
    Thalamocortical communication is a dynamic process influenced by both presynaptic and postsynaptic mechanisms. In this study, we recorded single-unit responses from cortical neurons that received direct input from the lateral geniculate nucleus (LGN) to address the question of whether prior patterns of cortical activity affect the ability of LGN inputs to drive cortical responses. By examining the ongoing activity that preceded the arrival of electrically evoked spikes from the LGN, we identified a number of activity patterns that were predictive of suprathreshold communication. Namely, cortical neurons were more likely to respond to LGN stimulation when their activity levels increased to 30-40Hz and/or their activity displayed rhythmic patterns (30 ms intervals) with increased power in the gamma frequency band. Cortical neurons were also more likely to respond to LGN stimulation when their activity increased 30-40 ms prior to stimulation, suggesting that the phase of gamma activity also contributes to geniculocortical communication. Based on these results, we conclude that ongoing activity in the cortex is not random, but rather organized in a manner that can influence the dynamics of thalamocortical communication

    Orientation Tuning of Correlated Activity in the Developing Lateral Geniculate Nucleus

    No full text
    Neural circuits and the cells that comprise them undergo developmental changes in the spatial organization of their connections and in their temporal response properties. Within the lateral geniculate nucleus (LGN) of the dorsal thalamus, these changes have pronounced effects on the spatiotemporal receptive fields (STRFs) of neurons. An open and unresolved question is how STRF maturation affects stimulus-evoked correlated activity between pairs of LGN neurons during development. This is an important question to answer because stimulus-evoked correlated activity likely plays a role in establishing the specificity of thalamocortical connectivity and the receptive fields (RFs) of postsynaptic cortical neurons. Using multielectrode recording methods and white noise stimuli, we recorded neural activity from ensembles of LGN neurons in cats across early development. As expected, there was a progressive maturation of the spatial and temporal properties of visual responses. Using drifting bar stimuli and cross-correlation analysis, we also determined the orientation-tuning bandwidth of correlated activity between pairs of LGN neurons at different stages of development (Sillito and Jones, 2002; Andolina et al., 2007; Stanley et al., 2012; Kelly et al., 2014). Despite the larger RFs and slower responses of immature LGN neurons compared with mature neurons, our results show that correlated activity in the LGN was as tightly tuned for orientation early in development as it was in the adult. Closer examination revealed this age-invariant orientation tuning of correlated activity likely involves cellular mechanisms related to spike fatigue in young animals and a progressive decrease in response latency with development.SIGNIFICANCE STATEMENT Orientation tuning is a fundamental property of neurons in primary visual cortex. An important and unresolved question is how orientation tuning emerges during brain development. This study explores a potential mechanism for the establishment of orientation tuning based on correlated activity patterns among ensembles of maturing neurons in the lateral geniculate nucleus (LGN) of the thalamus. Results show that correlated activity between pairs of LGN neurons is more tightly tuned than predictions based simply on receptive field size, indicating that correlated activity has the properties needed to play an important role in the development of geniculocortical circuits and the emergence of cortical orientation tuning

    Contextual Modulation of Feedforward Inputs to Primary Visual Cortex

    No full text
    Throughout the brain, parallel processing streams compose the building blocks of complex neural functions. One of the most salient models for studying the functional specialization of parallel visual streams in the primate brain is the lateral geniculate nucleus (LGN) of the dorsal thalamus, through which the parvocellular and magnocellular channels, On-center and Off-center channels, and ipsilateral and contralateral eye channels are maintained and provide the foundation for cortical processing. We examined three aspects of neural processing in these streams: (1) the relationship between extraclassical surround suppression, a widespread visual computation thought to represent a canonical neural computation, and the parallel channels of the LGN; (2) the magnitude of binocular interaction in the parallel streams; and (3) the magnitude of suppression elicited by perceptual competition (binocular rivalry) in each stream. Our results show that surround suppression is almost exclusive to Off channel cells; further, we found evidence for two different components of monocular surround suppression-an early-stage suppression exhibited by all magnocellular cells, and a late-stage suppression exhibited only by Off cells in both the parvocellular and magnocellular pathways. This finding indicates that stream-specific circuits contribute to surround suppression in the primate LGN and suggests a distinct role for suppression in the Off channel to the cortex. We also examined the responses of LGN neurons in alert macaque monkeys to determine whether neurons that supply the cortex with visual information are influenced by stimulation of both eyes. Our results demonstrate that LGN neurons are not influenced by stimulation of the non-dominant eye. This was the case when dichoptic stimuli were presented to classical receptive fields of neurons, extraclassical receptive fields of neurons, and when stimuli were appropriate to produce the perception of binocular rivalry
    corecore