111,566 research outputs found
Propagating Cosmological Perturbations in a Bouncing Universe
Using the simplest model for a bouncing universe, namely that for which
gravity is described by pure general relativity, the spatial sections are
positively curved and the matter content is a single scalar field, we obtain
the transition matrix relating cosmological perturbation modes between the
contracting and expanding phases. We show that this case provides a specific
example in which this relation explicitely depends on the perturbation scale
whenever the null energy condition (NEC) is close to be violated.Comment: 3 pages, 1 figure, to appear in the Tenth Marcel Grossmann
Proceeding
Lower Bounds on the Bounded Coefficient Complexity of Bilinear Maps
We prove lower bounds of order for both the problem to multiply
polynomials of degree , and to divide polynomials with remainder, in the
model of bounded coefficient arithmetic circuits over the complex numbers.
These lower bounds are optimal up to order of magnitude. The proof uses a
recent idea of R. Raz [Proc. 34th STOC 2002] proposed for matrix
multiplication. It reduces the linear problem to multiply a random circulant
matrix with a vector to the bilinear problem of cyclic convolution. We treat
the arising linear problem by extending J. Morgenstern's bound [J. ACM 20, pp.
305-306, 1973] in a unitarily invariant way. This establishes a new lower bound
on the bounded coefficient complexity of linear forms in terms of the singular
values of the corresponding matrix. In addition, we extend these lower bounds
for linear and bilinear maps to a model of circuits that allows a restricted
number of unbounded scalar multiplications.Comment: 19 page
On the measurement of ecological novelty: scale-eating pupfish are separated by 168 my from other scale-eating fishes.
The colonization of new adaptive zones is widely recognized as one of the hallmarks of adaptive radiation. However, the adoption of novel resources during this process is rarely distinguished from phenotypic change because morphology is a common proxy for ecology. How can we quantify ecological novelty independent of phenotype? Our study is split into two parts: we first document a remarkable example of ecological novelty, scale-eating (lepidophagy), within a rapidly-evolving adaptive radiation of Cyprinodon pupfishes on San Salvador Island, Bahamas. This specialized predatory niche is known in several other fish groups, but is not found elsewhere among the 1,500 species of atherinomorphs. Second, we quantify this ecological novelty by measuring the time-calibrated phylogenetic distance in years to the most closely-related species with convergent ecology. We find that scale-eating pupfish are separated by 168 million years of evolution from the nearest scale-eating fish. We apply this approach to a variety of examples and highlight the frequent decoupling of ecological novelty from phenotypic divergence. We observe that novel ecology is not always tightly correlated with rates of phenotypic or species diversification, particularly within recent adaptive radiations, necessitating the use of additional measures of ecological novelty independent of phenotype
- …
