9,989 research outputs found
On Computing Minimum Unsatisfiable Cores
Certifying the correctness of a SAT solver is straightforward for satisfiable instances of SAT. Given
Probing-Based Preprocessing Techniques for Propositional Satisfiability
Preprocessing is an often used approach for solving hard instances of propositional satisfiability (SAT). Preprocessing can be used for reducing the number of variables and for drastically modifying the set of clauses, either by eliminating irrelevant clauses or by inferring new clauses. Over the years, a large number of formula manipulation techniques has been proposed, that in some situations have allowed solving instances not otherwise solvable with stateof -the-art SAT solvers. This paper proposes probing-based preprocessing, an integrated approach for preprocessing propositional formulas, that for the first time integrates in a single algorithm most of the existing formula manipulation techniques. Moreover, the new unified framework can be used to develop new techniques. Preliminary experimental results illustrate that probing-based preprocessing can be effectively used as a preprocessing tool in state-of-theart SAT solvers
Hidden Structure in Unsatisfiable Random 3-SAT: an Empirical Study
Recent advances in propositional satisfiability (SAT) include studying the hidden structure of unsatisfiable formulas, i.e. explaining why a given formula is unsatisfiable. Although theoretical work on the topic has been developed in the past, only recently two empirical successful approaches have been proposed: extracting unsatisfiable cores and identifying strong backdoors. An unsatisfiable core is a subset of clauses that defines a sub-formula that is also unsatisfiable, whereas a strong backdoor defines a subset of variables which assigned with all values allow concluding that the formula is unsatisfiable. The contribution of this paper is two-fold. First, we study the relation between the search complexity of unsatisfiable random 3-SAT formulas and the sizes of unsatisfiable cores and strong backdoors. For this purpose, we use an existing algorithm which uses an approximated approach for calculating these values. Second, we introduce a new algorithm that optimally reduces the size of unsatisfiable cores and strong backdoors, thus giving more accurate results. Experimental results indicate that the search complexity of unsatisfiable random 3-SAT formulas is related with the size of unsatisfiable cores and strong backdoors. 1
An Overview of Backtrack Search Satisfiability Algorithms
Propositional Satisfiability (SAT) is often used as the underlying model for a significan
Cuscuton kinks and branes
In this paper, we study a peculiar model for the scalar field. We add the
cuscuton term in a standard model and investigate how this inclusion modifies
the usual behavior of kinks. We find the first order equations and calculate
the energy density and the total energy of the system. Also, we investigate the
linear stability of the model, which is governed by a Sturm-Liouville
eigenvalue equation that can be transformed in an equation of the Shcr\"odinger
type. The model is also investigated in the braneworld scenario, where a first
order formalism is also obtained and the linear stability is investigated.Comment: 21 pages, 9 figures; content added; to appear in NP
Identification of fullerene-like CdSe nanoparticles from optical spectroscopy calculations
Semiconducting nanoparticles are the building blocks of optical nanodevices
as their electronic states, and therefore light absorption and emission, can be
controlled by modifying their size and shape. CdSe is perhaps the most studied
of these nanoparticles, due to the efficiency of its synthesis, the high
quality of the resulting samples, and the fact that the optical gap is in the
visible range. In this article, we study light absorption of CdSe
nanostructures with sizes up to 1.5 nm within density functional theory. We
study both bulk fragments with wurtzite symmetry and novel fullerene-like
core-cage structures. The comparison with recent experimental optical spectra
allows us to confirm the synthesis of these fullerene-like CdSe clusters
Heuristic Backtracking Algorithms for SAT
In recent years backtrack search SAT solvers have been the subject of dramatic improvements. These improvements allowed SAT solvers to successfully replace BDDs in many areas of formal verification, and also motivated the development of many new challenging problem instances, many of which too hard for the current generation of SAT solvers. As a result, further improvements to SAT technology are expected to have key consequences in formal verification. The objective of this paper is to propose heuristic approaches to the backtrack step of backtrack search SAT solvers, with the goal of increasing the ability of the SAT solver to search different parts of the search space. The proposed heuristics to the backtrack step are inspired by the heuristics proposed in recent years for the branching step of SAT solvers, namely VSIDS and some of its improvements. The preliminary experimental results are promising, and motivate the integration of heuristic backtracking in state-of-the-art SAT solvers. 1
- …