1,389 research outputs found

    The internal description of a causal set: What the universe looks like from the inside

    Get PDF
    We describe an algebraic way to code the causal information of a discrete spacetime. The causal set C is transformed to a description in terms of the causal pasts of the events in C. This is done by an evolving set, a functor which to each event of C assigns its causal past. Evolving sets obey a Heyting algebra which is characterised by a non-standard notion of complement. Conclusions about the causal structure of the causal set can be drawn by calculating the complement of the evolving set. A causal quantum theory can be based on the quantum version of evolving sets, which we briefly discuss.Comment: Version to appear in Comm.Math.Phys. (minor modifications). 37 pages, several eps figure

    On routing-optimal networks for multiple unicasts

    Get PDF
    In this paper, we consider the problem of multiple unicast sessions over a directed acyclic graph. It is well known that linear network coding is insufficient for achieving the capacity region, in the general case. However, there exist networks for which routing is sufficient to achieve the whole rate region, and we refer to them as routing-optimal networks. We identify a class of routing-optimal networks, which we refer to as information-distributive networks, defined by three topological features. Due to these features, for each rate vector achieved by network coding, there is always a routing scheme such that it achieves the same rate vector, and the traffic transmitted through the network is exactly the information transmitted over the cut-sets between the sources and the sinks in the corresponding network coding scheme. We present examples of information-distributive networks, including some examples from (1) index coding and (2) from a single unicast session with hard deadline constraint. © 2014 IEEE
    corecore