108 research outputs found

    Electron tomography of late stages of FcRn-mediated antibody transcytosis in neonatal rat small intestine

    Get PDF
    The neonatal Fc receptor (FcRn) transports maternal immunoglobulin (IgG) across epithelia to confer passive immunity to mammalian young. In newborn rodents, FcRn transcytoses IgG from ingested milk across the intestinal epithelium for release into the bloodstream. We used electron tomography to examine FcRn transport of Nanogold-labeled Fc (Au-Fc) in neonatal rat jejunum, focusing on later aspects of transport by chasing Au-Fc before fixation. We observed pools of Au-Fc in dilated regions of the lateral intercellular space (LIS), likely representing exit sites where Au-Fc accumulates en route to the blood. Before weaning, the jejunum functions primarily in IgG transport and exhibits unusual properties: clathrin-rich regions near/at the basolateral LIS and multivesicular bodies (MVBs) expressing early endosomal markers. To address whether these features are related to IgG transport, we examined LIS and endocytic/transcytotic structures from neonatal and weaned animals. Weaned samples showed less LIS-associated clathrin. MVBs labeled with late endosomal/lysosomal markers were smaller than their neonatal counterparts but contained 10 times more internal compartments. These results are consistent with hypotheses that clathrin-rich basolateral regions in neonatal jejunum are involved in IgG exocytosis and that MVBs function in IgG transport while FcRn is expressed but switch to degradative functions after weaning, when the jejunum does not express FcRn or transport IgG

    Organization of the Smallest Eukaryotic Spindle

    Get PDF
    In metazoans, plants, and fungi, the spindle checkpoint delays mitosis until each chromosome is attached to one or more of its own kinetochore microtubules (kMTs). Some unicellular eukaryotes, however, have been reported to have fewer kMTs than chromosomes. If this is the case, it is unclear how the spindle checkpoint could be satisfied. In the vast majority of the previous studies, mitotic cells were chemically fixed at room temperature, but this does not always preserve dynamic and/or small structures like spindle MTs and kinetochores. Indeed, later higher-resolution studies have reversed some earlier claims. Here we show that in Ostreococcus tauri (the smallest eukaryote known), mitosis does involve fewer spindle microtubules than chromosomes. O. tauri cultures were enriched for mitotic cells, high-pressure frozen, and then imaged in 3D both in plastic and in a near-native ("frozen-hydrated") state through electron tomography. Mitotic cells have a distinctive intranuclear heterochromatin-free "spindle tunnel" with approximately four short and occasionally one long, incomplete (unclosed) microtubule at each end of the spindle tunnel. Because other aspects of O. tauri’s spindle checkpoint seem typical, these data suggest that O. tauri’s 20 chromosomes are physically linked and segregated as just one or a small number of groups

    Organellar Contacts of Milk Lipid Droplets

    Get PDF
    Milk-secreting epithelial cells of the mammary gland are functionally specialized for the synthesis and secretion of large quantities of neutral lipids, a major macronutrient in milk from most mammals. Milk lipid synthesis and secretion are hormonally regulated and secretion occurs by a unique apocrine mechanism. Neutral lipids are synthesized and packaged into perilipin-2 (PLIN2) coated cytoplasmic lipid droplets within specialized cisternal domains of rough endoplasmic reticulum (ER). Continued lipid synthesis by ER membrane enzymes and lipid droplet fusion contribute to the large size of these cytoplasmic lipid droplets (5–15 μm in diameter). Lipid droplets are directionally trafficked within the epithelial cell to the apical plasma membrane. Upon contact, a molecular docking complex assembles to tether the droplet to the plasma membrane and facilitate its membrane envelopment. This docking complex consists of the transmembrane protein, butyrophilin, the cytoplasmic housekeeping protein, xanthine dehydrogenase/oxidoreductase, the lipid droplet coat proteins, PLIN2, and cell death-inducing DFFA-like effector A. Interactions of mitochondria, Golgi, and secretory vesicles with docked lipid droplets have also been reported and may supply membrane phospholipids, energy, or scaffold cytoskeleton for apocrine secretion of the lipid droplet. Final secretion of lipid droplets into the milk occurs in response to oxytocin-stimulated contraction of myoepithelial cells that surround milk-secreting epithelial cells. The mechanistic details of lipid droplet release are unknown at this time. The final secreted milk fat globule consists of a triglyceride core coated with a phospholipid monolayer and various coat proteins, fully encased in a membrane bilayer

    Multiscale Imaging of HIV-1 Transmission in Humanized Mice

    Get PDF
    HIV transmission within lymphoid tissues remains incompletely characterized at the level of individual cells and virions. Here we visually describe our approach to understanding HIV-1 dissemination at different levels of volume and resolution within lymphoid tissues from HIV-1-infected humanized mice. We combined tissue clearing techniques, immunostaining, and light sheet fluorescence microscopy to visualize large-volumes of intact tissue with single-cell resolution from HIV-1-infected humanized mice. In parallel, we imaged adjacent regions of tissue using electron microscopy and electron tomography to gain 3D ultrastructural information about the same tissue samples. This approach can provide spatial information about the density and distribution of target cells, HIV-1-infected cells, and individual budding and free-virions within lymphoid tissues. Multiscale imaging of HIV-1 infected tissues from humanized mice can provide insight into the biological mechanisms of HIV-1 transmission through the correlation of global pathology with structural details and these methods are directly translatable to other animal models and human clinical samples

    Organellar Contacts of Milk Lipid Droplets

    Get PDF
    Milk-secreting epithelial cells of the mammary gland are functionally specialized for the synthesis and secretion of large quantities of neutral lipids, a major macronutrient in milk from most mammals. Milk lipid synthesis and secretion are hormonally regulated and secretion occurs by a unique apocrine mechanism. Neutral lipids are synthesized and packaged into perilipin-2 (PLIN2) coated cytoplasmic lipid droplets within specialized cisternal domains of rough endoplasmic reticulum (ER). Continued lipid synthesis by ER membrane enzymes and lipid droplet fusion contribute to the large size of these cytoplasmic lipid droplets (5–15 μm in diameter). Lipid droplets are directionally trafficked within the epithelial cell to the apical plasma membrane. Upon contact, a molecular docking complex assembles to tether the droplet to the plasma membrane and facilitate its membrane envelopment. This docking complex consists of the transmembrane protein, butyrophilin, the cytoplasmic housekeeping protein, xanthine dehydrogenase/oxidoreductase, the lipid droplet coat proteins, PLIN2, and cell death-inducing DFFA-like effector A. Interactions of mitochondria, Golgi, and secretory vesicles with docked lipid droplets have also been reported and may supply membrane phospholipids, energy, or scaffold cytoskeleton for apocrine secretion of the lipid droplet. Final secretion of lipid droplets into the milk occurs in response to oxytocin-stimulated contraction of myoepithelial cells that surround milk-secreting epithelial cells. The mechanistic details of lipid droplet release are unknown at this time. The final secreted milk fat globule consists of a triglyceride core coated with a phospholipid monolayer and various coat proteins, fully encased in a membrane bilayer

    Cellular origin and ultrastructure of membranes induced during poliovirus infection

    Get PDF
    Poliovirus RNA replicative complexes are associated with cytoplasmic membranous structures that accumulate during viral infection. These membranes were immunoisolated by using a monoclonal antibody against the viral nonstructural protein 2C. Biochemical analysis of the isolated membranes revealed that several organelles of the host cell (lysosomes, trans-Golgi stack and trans-Golgi network, and endoplasmic reticulum) contributed to the virus-induced membranous structures. Electron microscopy of infected cells preserved by high-pressure freezing revealed that the virus-induced membranes contain double lipid bilayers that surround apparently cytosolic material. Immunolabeling experiments showed that poliovirus proteins 2C and 3D were localized to the same membranes as the cellular markers tested. The morphological and biochemical data are consistent with the hypothesis that autophagy or a similar host process is involved in the formation of the poliovirus-induced membranes

    A Shotgun Proteomic Method for the Identification of Membrane-Embedded Proteins and Peptides

    Get PDF
    Integral membrane proteins perform crucial cellular functions and are the targets for the majority of pharmaceutical agents. However, the hydrophobic nature of their membrane-embedded domains makes them difficult to work with. Here, we describe a shotgun proteomic method for the high-throughput analysis of the membrane-embedded transmembrane domains of integral membrane proteins which extends the depth of coverage of the membrane proteome
    • …
    corecore