96 research outputs found
A high fidelity real-time simulation of a small turboshaft engine
A high-fidelity component-type model and real-time digital simulation of the General Electric T700-GE-700 turboshaft engine were developed for use with current generation real-time blade-element rotor helicopter simulations. A control system model based on the specification fuel control system used in the UH-60A Black Hawk helicopter is also presented. The modeling assumptions and real-time digital implementation methods particular to the simulation of small turboshaft engines are described. The validity of the simulation is demonstrated by comparison with analysis-oriented simulations developed by the manufacturer, available test data, and flight-test time histories
Rotorcraft flight-propulsion control integration
The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories have initiated and completed, in part, a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the T700 and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented
Rotorcraft flight-propulsion control integration: An eclectic design concept
The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories, have initiated and partially completed a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the General Electric T700 engine and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented
An analysis of landing rates and separations at the Dallas/Fort Worth International Airport
Advanced air traffic management systems such as the Center/TRACON Automation System (CTAS) should yield a wide range of benefits, including reduced aircraft delays and controller workload. To determine the traffic-flow benefits achievable from future terminal airspace automation, live radar information was used to perform an analysis of current aircraft landing rates and separations at the Dallas/Fort Worth International Airport. Separation statistics that result when controllers balance complex control procedural constraints in order to maintain high landing rates are presented. In addition, the analysis estimates the potential for airport capacity improvements by determining the unused landing opportunities that occur during rush traffic periods. Results suggest a large potential for improving the accuracy and consistency of spacing between arrivals on final approach, and they support earlier simulation findings that improved air traffic management would increase capacity and reduce delays
Share the Sky: Concepts and Technologies That Will Shape Future Airspace Use
The airspace challenge for the United States is to protect national sovereignty and ensure the safety and security of those on the ground and in the air, while at the same time ensuring the efficiency of flight, reducing the costs involved, protecting the environment, and protecting the freedom of access to the airspace. Many visions of the future NAS hold a relatively near-term perspective, focusing on existing uses of the airspace and assuming that new uses will make up a small fraction of total use. In the longer term, the skies will be filled with diverse and amazing new air vehicles filling our societal needs. Anticipated new vehicles include autonomous air vehicles acting both independently and in coordinated groups, unpiloted cargo carriers, and large numbers of personal air vehicles and small-scale point-to-point transports. These vehicles will enable new capabilities that have the potential to increase societal mobility, transport freight at lower cost and with lower environmental impact, improve the study of the Earth s atmosphere and ecosystem, and increase societal safety and security by improving or drastically lowering the cost of critical services such as firefighting, emergency medical evacuation, search and rescue, border and neighborhood surveillance, and the inspection of our infrastructure. To ensure that uses of the airspace can continue to grow for the benefit of all, a new paradigm for operations is needed: equitably and safely sharing the airspace. This paper is an examination of such a vision, concentrating on the operations of all types of air vehicles and future uses of the National Airspace. Attributes of a long-term future airspace system are provided, emerging operations technologies are described, and initial steps in research and development are recommended
Method and Apparatus for Generating Flight-Optimizing Trajectories
An apparatus for generating flight-optimizing trajectories for a first aircraft includes a receiver capable of receiving second trajectory information associated with at least one second aircraft. The apparatus also includes a traffic aware planner (TAP) module operably connected to the receiver to receive the second trajectory information. The apparatus also includes at least one internal input device on board the first aircraft to receive first trajectory information associated with the first aircraft and a TAP application capable of calculating an optimal trajectory for the first aircraft based at least on the first trajectory information and the second trajectory information. The optimal trajectory at least avoids conflicts between the first trajectory information and the second trajectory information
Analysis of a Dynamic Multi-Track Airway Concept for Air Traffic Management
The Dynamic Multi-track Airways (DMA) Concept for Air Traffic Management (ATM) proposes a network of high-altitude airways constructed of multiple, closely spaced, parallel tracks designed to increase en-route capacity in high-demand airspace corridors. Segregated from non-airway operations, these multi-track airways establish high-priority traffic flow corridors along optimal routes between major terminal areas throughout the National Airspace System (NAS). Air traffic controllers transition aircraft equipped for DMA operations to DMA entry points, the aircraft use autonomous control of airspeed to fly the continuous-airspace airway and achieve an economic benefit, and controllers then transition the aircraft from the DMA exit to the terminal area. Aircraft authority within the DMA includes responsibility for spacing and/or separation from other DMA aircraft. The DMA controller is responsible for coordinating the entry and exit of traffic to and from the DMA and for traffic flow management (TFM), including adjusting DMA routing on a daily basis to account for predicted weather and wind patterns and re-routing DMAs in real time to accommodate unpredicted weather changes. However, the DMA controller is not responsible for monitoring the DMA for traffic separation. This report defines the mature state concept, explores its feasibility and performance, and identifies potential benefits. The report also discusses (a) an analysis of a single DMA, which was modeled within the NAS to assess capacity and determine the impact of a single DMA on regional sector loads and conflict potential; (b) a demand analysis, which was conducted to determine likely city-pair candidates for a nationwide DMA network and to determine the expected demand fraction; (c) two track configurations, which were modeled and analyzed for their operational characteristic; (d) software-prototype airborne capabilities developed for DMA operations research; (e) a feasibility analysis of key attributes in the concept design; (f) a near-term, transitional application of the DMA concept as a proving ground for new airborne technologies; and (g) conclusions. The analysis indicates that the operational feasibility of a national DMA network faces significant challenges, especially for interactions between DMAs and between DMA and non-DMA traffic. Provided these issues are resolved, sectors near DMAs could experience significant local capacity benefits
Prototype Flight Management Capabilities to Explore Temporal RNP Concepts
Next Generation Air Transportation System (NextGen) concepts of operation may require aircraft to fly planned trajectories in four dimensions three spatial dimensions and time. A prototype 4D flight management capability is being developed by NASA to facilitate the development of these concepts. New trajectory generation functions extend today's flight management system (FMS) capabilities that meet a single Required Time of Arrival (RTA) to trajectory solutions that comply with multiple RTA constraints. When a solution is not possible, a constraint management capability relaxes constraints to achieve a trajectory solution that meets the most important constraints as specified by candidate NextGen concepts. New flight guidance functions provide continuous guidance to the aircraft s flight control system to enable it to fly specified 4D trajectories. Guidance options developed for research investigations include a moving time window with varying tolerances that are a function of proximity to imposed constraints, and guidance that recalculates the aircraft s planned trajectory as a function of the estimation of current compliance. Compliance tolerances are related to required navigation performance (RNP) through the extension of existing RNP concepts for lateral containment. A conceptual temporal RNP implementation and prototype display symbology are proposed
Research in Modeling and Simulation for Airspace Systems Innovation
This viewgraph presentation provides an overview of some of the applied research and simulation methodologies at the NASA Langley Research Center that support aerospace systems innovation. Risk assessment methodologies, complex systems design and analysis methodologies, and aer ospace operations simulations are described. Potential areas for future research and collaboration using interactive and distributed simula tions are also proposed
Developing an Onboard Traffic-Aware Flight Optimization Capability for Near-Term Low-Cost Implementation
The concept of Traffic Aware Strategic Aircrew Requests (TASAR) combines Automatic Dependent Surveillance Broadcast (ADS-B) IN and airborne automation to enable user-optimal in-flight trajectory replanning and to increase the likelihood of Air Traffic Control (ATC) approval for the resulting trajectory change request. TASAR is designed as a near-term application to improve flight efficiency or other user-desired attributes of the flight while not impacting and potentially benefiting ATC. Previous work has indicated the potential for significant benefits for each TASAR-equipped aircraft. This paper will discuss the approach to minimizing TASAR's cost for implementation and accelerating readiness for near-term implementation
- …