1,671 research outputs found

    Bridget of Sweden (1303-1373) as Author

    Get PDF

    Reproductive success, habitat selection, and neonatal mule deer mortality in a natural gas development area

    Get PDF
    Includes bibliographical references.2016 Summer.Mule deer (Odocoileus hemionus) populations have periodically declined throughout the western United States, with notable declines during the late 1960s, early 1970s, and 1990s (Unsworth et al. 1999) to present. Declining population levels can be attributed to low fawn survival and subsequently low population recruitment (Unsworth et al. 1999, Pojar and Bowden 2004) caused by declining habitat availability and quality (Gill 2001, Lutz et al. 2003, Watkins et al. 2007, Bergman et al. 2015). Although, general public perception is that declining deer numbers are attributed exclusively to predation (Barsness 1998, Willoughby 2012), predator control research suggests otherwise (Hurley et al. 2011, Kilgo et al. 2014) and compelling evidence exists that improving habitat quality can enhance deer populations (Bishop et al. 2009, Bergman et al. 2014). Complicating this story is the large-scale habitat alterations driven by natural gas development, which may also influence deer population dynamics. Natural gas development and associated disturbances that can affect deer habitat and population dynamics include conversion of native plant communities to drill pads, roads, or noxious weeds and noise pollution from compressor stations, drilling rigs, increased traffic, and year round occurrence of human activities. Natural gas development alters mule deer habitat selection through direct and indirect habitat loss (Sawyer et al. 2006, Sawyer et al. 2009, Northrup et al. 2015). Direct habitat loss results from construction of well pads, access roads, compressor stations, pipelines, and transmission lines. Activity, traffic, and noise associated with increased human presence and development may lead to indirect habitat loss. Indirect habitat loss is exacerbated because active wells produce gas for 40 years or longer (Sawyer et al. 2006, Sawyer et al. 2009). In addition, indirect habitat loss affects considerably larger areas than direct habitat loss (Sawyer et al. 2006, Sawyer et al. 2009). Recent research suggests direct and indirect losses can lead to behavioral responses to development (Sawyer et al. 2006, Dzialak et al. 2011b, Northrup et al. 2015). However, deer can behaviorally mediate these impacts by altering activity patterns or selecting habitat with topographic diversity that provides refuge from development (Northrup et al. 2015). Obtaining a more complete understanding of the potential impacts of development is critical to comprehend population dynamics of deer and to develop viable mitigation options. Understanding how natural gas development and other factors influence reproductive success metrics (e.g., pregnancy, in utero fetal, and fetal survival rates), fetal sex ratio, habitat characteristics of birth and predation sites (i.e., habitat selection), and neonatal (i.e., 0–6 months old) mule deer mortality have been identified as knowledge gaps. Thus, my dissertation focused on addressing these knowledge gaps through individual reproductive success monitoring using vaginal implant transmitters. I conducted this research during 2012–2014 in the Piceance Basin of northwestern Colorado in study areas with relatively high (0.04–0.90 well pads/km2) or low (0.00–0.10 well pads/km2) levels of natural gas development. In chapter 1, I examined the influence of adult female, natural gas development, and temporal factors on reproductive success metrics (i.e., pregnancy rate, in utero fetal rate, and fetal survival rate) and fetal sex ratio. Pregnancy rates were high, did not vary across years, and were essentially equal between study areas. In utero fetal rates were lower for yearling females (n = 10) and varied annually compared to adult females (n = 204) possibly from annual weather patterns that influenced forage quality and digestibility. Fetal survival rates increased over time and were lower in the high development study areas than the low development study area in 2012 possibly caused by a compounding influence of development disturbance during extreme environmental conditions (i.e., drought). Higher road density in a female’s core area (i.e., 50% minimum convex polygon) on summer range possibly contributed to better maternal body condition through increased forage quality along roads. Following the Trivers-Willard hypothesis which predicts females in good versus poor condition will produce more males, my results suggested females had a higher probability of producing more male offspring as road density increased. However, under my proposed mechanism, I would expect body condition and road density to be strongly correlated, but they were only weakly correlated (r = 0.07). I also note that I did not detect a biased sex ratio at the population level. Thus, I am uncertain of the exact mechanism influencing the relationship between road density and fetal sex ratio. In chapter 2, I used global positioning system collar data in conjunction with VITs and linear mixed models to validate the use of maternal deer movement rates (m/day) to determine timing of parturition. Daily movement rate of maternal deer decreased by 39% from 1 day before parturition ((x ) ̅ = 1,243.56, SD = 1,043.03) to 1 day after parturition ((x ) ̅ = 805.30, SD = 652.91). Thus, I suggest that a mule deer female whose daily movement rate significantly decreases to ≤ 800 m/day has likely given birth. In the future, I will analyze an independent data set to validate the recommended threshold value and possibly develop a movement rate algorithm. In chapter 3, I fit resource selection functions to examine the influence of natural gas development and environmental factors on birth site selection and habitat characteristics of predation sites. Females selected birth sites farther from producing well pads and with increased cover for concealing neonates and appeared to select habitat (e.g., north-facing slopes and further from treed edges) that minimized neonate predation risk. Predation sites were characterized as being closer to development and in habitat (e.g., woodlands, aspen-conifer stands, and north-facing slopes) that possibly provided favorable microclimates for neonates and abundant high quality forage for lactating females. However, I note that predation sites were on average relatively far (2,057 m) from producing well pads and I have difficulty proposing a mechanism to explain how well pads that far away can influence predation site characteristics. My results suggest natural gas development and environmental factors (e.g., slope, habitat type, and aspect) can influence birth site selection with predation site characteristics possibly related to foraging habitat selection. In chapter 4, I tested hypotheses about the influence of adult female, natural gas development, neonate, and temporal factors on neonatal mortality using a multi-state model. Predation and death by malnutrition decreased from 0–14 days old. Predation of neonates was positively correlated with rump fat thickness of adult females, but negatively correlated with the distance (0–0.4 km) from a female’s core area (i.e., 50% kernel density estimate) to a producing well pad on winter or summer range. Death by malnutrition was positively correlated with the distance from a female’s core area to a road on winter range and weakly, but negatively correlated with temperature. During my study, predation was the leading cause of neonatal mortality in both areas and mean daily predation probability was 9% higher in the high versus low development areas. However, black bear (Ursus americanus) predation was the leading cause of neonatal mortality in the high development areas (22% of all mortalities) compared to cougar (Felis concolor) predation in the low development areas (36% of all mortalities). Reduced precipitation and patchy habitat further fragmented by development possibly contributed to less hiding cover or edge effects, potentially leading to increased predation in the high development areas. Overall, my results suggest natural gas development may decrease fetal survival, influence birth site selection, and increase neonatal mortality, especially through predation, which may have consequences for mule deer recruitment and population dynamics depending on development intensity, habitat, and environmental conditions (e.g., drought). Consequently, developers and managers should consider strategies to mitigate impacts from development and improve forage and habitat quality and availability to minimize fitness consequences of deer. Such strategies could include development planning to avoid important habitats during critical time periods, implementing habitat treatments to rehabilitate areas, and minimizing habitat fragmentation and removal of hiding cover when constructing well pads and roads

    Improving Recovery for Libraries That Have Been Hit by Disaster

    Get PDF
    This study analyzes research into cases where various types of libraries around the world were hit by disaster and were then able to restore services to their patrons, in order to determine the effect of appeals to outside agencies for help on the amount of funding obtained and the time that it took to restore library services. Of the sixty cases examined, thirty-six had full records that could be examined tracking the fate of library services from catastrophe to recovery. This research shows that all libraries need to consider methods for handling outside help and donations in their disaster planning. Appeals to outside interest groups and international library agencies in brought in additional funds and appear to have shortened the time to the full recovery of services, even for libraries with considerable insurance coverage. Only in cases of wartime destruction is outside help essential for the survival of libraries

    Seascape Connectivity of Gulf Sturgeon \u3ci\u3eAcipenser oxyrinchus desotoi\u3c/i\u3e Population Units Across the Northern Gulf of Mexico

    Get PDF
    Critical habitat was designated in 2003 for federally threatened anadromous Gulf sturgeon to aid in population recovery. This study examined overwintering Gulf sturgeon spatial use and movement through critical habitat monitored by the Ship Island acoustic array from 2011 to 2015. Previous studies observed western population Gulf sturgeon (Pearl and Pascagoula rivers) overwintering near the ends and within the passes of the barrier islands of the Mississippi Sound, USA. Recent telemetry studies detected eastern population fish (Escambia, Blackwater, Yellow, and Choctawhatchee rivers) overwintering as far west as Mobile Bay, Alabama; however, this study is the first to observe eastern population fish overwintering in western population critical habitat associated with the Ship Island array. Use of overwintering habitat was compared using mean active days detected and rate of travel to and from the array. There was no significant difference in mean active days of population units on the array; however, travel rate to the array from natal drainages was significantly different, with eastern population individuals traveling at a faster rate compared to western population individuals. Post hoc tests indicated that individuals from the Blackwater River had a significantly higher travel rate compared to Pascagoula River individuals. We documented large-scale seascape connectivity among population units of Gulf sturgeon across the northern Gulf of Mexico. Although large-scale seascape connectivity promotes mixing among population units and an exchange of marine nutrients into riverine environments, large-scale migration poses an issue for endangered species such as Gulf sturgeon, as there is greater risk of bycatch mortality and size-specific predation

    Where Do We Go From Here? A Summary of Issues of Concern and Recommendations Developed During the Panel Discussion of the Large Pelagic Fishes Symposium

    Get PDF
    One of the goals of the Large Pelagic Fishes Symposium was to provide a forum for development of a list of Issues of Concern regarding large pelagic fishes and their fisheries in the Caribbean and Gulf of Mexico region. During the Symposium and ensuing Panel Discussion, it became clear that the level of consciousness concerning large pelagic fishes is of equal importance to that of other regional fisheries such as reef fishes and conch/lobster. Four major issues of concern regarding large pelagic fishes in the region surfaced during the Symposium. The Symposium Committee recommends that future resources and energy should be addressed to these identified concerns: 1) Fisheries policy-advisors and managers are not getting information from scientists in a timely fashion; 2) Approaches to reduce overfishing and its negative effects need to be strengthened; 3) Insufficient attention is being paid to instituting effective regional management; and 4) Initiatives to engage fishers in management processes and to help find solutions are inadequate. Panel members and Symposium participants made a number of recommendations for addressing each of these issues. The recommendations related to helping resolve each issue of concern are listed

    Point-Focus Concentration Compact Telescoping Array: EESP Option 1 Phase Final Report for Public Release

    Get PDF
    Orbital ATK, in partnership with Mark ONeill LLC (MOLLC) and SolAero Technologies Corp., has developed a novel solar array platform, PFC-CTA, which provides a significant advance in performance and cost reduction compared to all currently available space solar systems. PFC refers to the Point Focus Concentration of light provided by MOLLCs thin, flat Fresnel optics. These lenses focus light to a point of approximately 100 times the intensity of the ambient light, onto a solar cell of approximately 1/25th the size of the lens. CTA stands for Compact Telescoping Array1, which is the solar array blanket structural platform originally devised by NASA and currently being advanced by Orbital ATK and partners under NASA and AFRL funding to a projected TRL 5+ by late-2018. The NASA Game Changing Development Extreme Environment Solar Power (EESP) Option 1 Phase study has enabled Orbital ATK to generate and refine component designs, perform component level and system performance analyses, and test prototype hardware of the key elements of PFC-CTA, and increased the TRL of PFC-specific technology elements to TRL ~5. Key performance metrics currently projected are as follows: Scalability from 300 kW per wing (AM0); Specific Power > 250 W/kg (BoL, AM0); Stowage Efficiency > 60 kW/m3; 5:1 margin on pointing tolerance vs. capability; >50% launched cost savings; Wide range of operability between Venus and Saturn by active and/or passive thermal management

    A Tracer Investigation of Pheromone Dispersion in Lodgepole and Ponderosa Pine Forest Canopies

    Get PDF
    Tracer experiments were conducted in 2000 and 2001 to study spread of insect pheromone plumes in forest canopies. The field sites consisted of lodgepole pine (Pinus contorta) and ponderosa pine (P. ponderosa) canopies in 2000 and 2001, respectively. Ranges of temperature, wind speed, and turbulence conditions were similar in the two campaigns, and field data showed comparable variability on near-instantaneous time scales of wind speed, wind direction, and plume behavior. We developed simple empirical equations to estimate average horizontal and vertical plume spread as functions of standard turbulence statistics, downwind distance from the source, and wind speed. For horizontal plume spread, predicted dispersion coefficients were within a factor of 3, or better, for 97 percent of the observed values in the combined dataset from 2000 and 2001. Likewise, 99 percent of the predicted vertical dispersion coefficients were within a factor of 3 of the observed data

    Preliminary analysis of LDEF instrument A0187-1: Chemistry of Micrometeoroids Experiment

    Get PDF
    The Chemistry of Micrometeoroids Experiment (CME) exposed approximately 0.8 sq. m of gold on the Long Duration Exposure Facility's (LDEF's) trailing edge (location A03) and approximately 1.1 sq. m of aluminum in the forward-facing A11 location. The most significant results to date relate to the discovery of unmelted pyroxene and olivine fragments associated with natural cosmic dust impacts. The latter are sufficiently large for detailed phase studies, and they serve to demonstrate that recovery of unmelted dust fragments is a realistic prospect for further dust experiments that will employ more advanced collector media. We also discovered that man-made debris impacts occur on the LDEF's trailing edge with substantially higher frequency than expected, suggesting that orbital debris in highly elliptical orbits may have been somewhat underestimated

    A Method for Revealing and Addressing Security Vulnerabilities in Cyber-physical Systems by Modeling Malicious Agent Interactions with Formal Verification

    Get PDF
    Several cyber-attacks on the cyber-physical systems (CPS) that monitor and control critical infrastructure were publically announced over the last few years. Almost without exception, the proposed security solutions focus on preventing unauthorized access to the industrial control systems (ICS) at various levels – the defense in depth approach. While useful, it does not address the problem of making the systems more capable of responding to the malicious actions of an attacker once they have gained access to the system. The first step in making an ICS more resilient to an attacker is identifying the cyber security vulnerabilities the attacker can use during system design. This paper presents a method that reveals cyber security vulnerabilities in ICS through the formal modeling of the system and malicious agents. The inclusion of the malicious agent in the analysis of an existing systems identifies security vulnerabilities that are missed in traditional functional model checking
    • …
    corecore