1,414 research outputs found

    Chiral Extrapolation of Lattice Data for Heavy Meson Hyperfine Splittings

    Full text link
    We investigate the chiral extrapolation of the lattice data for the light-heavy meson hyperfine splittings D^*-D and B^*-B to the physical region for the light quark mass. The chiral loop corrections providing non-analytic behavior in m_\pi are consistent with chiral perturbation theory for heavy mesons. Since chiral loop corrections tend to decrease the already too low splittings obtained from linear extrapolation, we investigate two models to guide the form of the analytic background behavior: the constituent quark potential model, and the covariant model of QCD based on the ladder-rainbow truncation of the Dyson-Schwinger equations. The extrapolated hyperfine splittings remain clearly below the experimental values even allowing for the model dependence in the description of the analytic background.Comment: 14 pages, 4 figures, typos corrected, presentation clarifie

    K_{l3} transition form factors

    Get PDF
    The rainbow truncation of the quark Dyson-Schwinger equation is combined with the ladder Bethe-Salpeter equation for the meson bound state amplitudes and the dressed quark-W vertex in a manifestly covariant calculation of the K_{l3} transition form factors and decay width in impulse approximation. With model gluon parameters previously fixed by the chiral condensate, the pion mass and decay constant, and the kaon mass, our results for the K_{l3} form factors and the kaon semileptonic decay width are in good agreement with the experimental data.Comment: 8 pages, 3 figures, Revte

    N=1 Supersymmetric Spin-Charge Separation in effective gauge theories of planar magnetic superconductors

    Full text link
    We present a N=1 Supersymmetric extension of a spin-charge separated effective SU(2)×US(1)SU(2)\times U_S(1) `particle-hole' gauge theory of excitations about the nodes of the gap of a d-wave planar magnetic superconductor. The supersymmetry is achieved without introducing extra degrees of freedom, as compared to the non-supersymmetric models. The only exception, the introduction of gaugino fieds, finds a natural physical interpretation as describing interlayer coupling in the statistical model. The low-energy continuum theory is described by a relativistic (2+1)-dimensional supersymmetric CP1CP^1 σ\sigma-model with Gross-Neveu-Thirring-type four-fermion interactions. We emphasize the crucial r\^ole of the CP1CP^1 constraint in inducing a non-trivial dynamical mass generation for fermions (and thus superconductivity), in a way compatible with manifest N=1 supersymmetry. We also give a preliminary discussion of non-perturbative effects. We argue that supersymmetry suppresses the dangerous for superconductivity instanton contributions to the mass of the perturbatively massless gauge boson of the unbroken U(1) subgroup of SU(2). Finally, we point out the possibility of applying these ideas to effective gauge models of spin-charge separation in one-space dimensional superconducting chains of holons, which, for example, have recently been claimed to be important in the stripe phase of underdoped cuprates.Comment: 19 pages LATEX (minor misprints in formula (43) corrected

    Aspects and consequences of a dressed-quark-gluon vertex

    Full text link
    Features of the dressed-quark-gluon vertex and their role in the gap and Bethe-Salpeter equations are explored. It is argued that quenched lattice data indicate the existence of net attraction in the colour-octet projection of the quark-antiquark scattering kernel. This attraction affects the uniformity with which solutions of truncated equations converge pointwise to solutions of the complete gap and vertex equations. For current-quark masses less than the scale set by dynamical chiral symmetry breaking, the dependence of the dressed-quark-gluon vertex on the current-quark mass is weak. The study employs a vertex model whose diagrammatic content is explicitly enumerable. That enables the systematic construction of a vertex-consistent Bethe-Salpeter kernel and thereby an exploration of the consequences for the strong interaction spectrum of attraction in the colour-octet channel. With rising current-quark mass the rainbow-ladder truncation is shown to provide an increasingly accurate estimate of a bound state's mass. Moreover, the calculated splitting between vector and pseudoscalar meson masses vanishes as the current-quark mass increases, which argues for the mass of the pseudoscalar partner of the \Upsilon(1S) to be above 9.4 GeV. The absence of colour-antitriplet diquarks from the strong interaction spectrum is contingent upon the net amount of attraction in the octet projected quark-antiquark scattering kernel. There is a window within which diquarks appear. The amount of attraction suggested by lattice results is outside this domain.Comment: 22 pages, 12 figure

    A systematic approach to the Planck LFI end-to-end test and its application to the DPC Level 1 pipeline

    Full text link
    The Level 1 of the Planck LFI Data Processing Centre (DPC) is devoted to the handling of the scientific and housekeeping telemetry. It is a critical component of the Planck ground segment which has to strictly commit to the project schedule to be ready for the launch and flight operations. In order to guarantee the quality necessary to achieve the objectives of the Planck mission, the design and development of the Level 1 software has followed the ESA Software Engineering Standards. A fundamental step in the software life cycle is the Verification and Validation of the software. The purpose of this work is to show an example of procedures, test development and analysis successfully applied to a key software project of an ESA mission. We present the end-to-end validation tests performed on the Level 1 of the LFI-DPC, by detailing the methods used and the results obtained. Different approaches have been used to test the scientific and housekeeping data processing. Scientific data processing has been tested by injecting signals with known properties directly into the acquisition electronics, in order to generate a test dataset of real telemetry data and reproduce as much as possible nominal conditions. For the HK telemetry processing, validation software have been developed to inject known parameter values into a set of real housekeeping packets and perform a comparison with the corresponding timelines generated by the Level 1. With the proposed validation and verification procedure, where the on-board and ground processing are viewed as a single pipeline, we demonstrated that the scientific and housekeeping processing of the Planck-LFI raw data is correct and meets the project requirements.Comment: 20 pages, 7 figures; this paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jins

    Current quark mass dependence of nucleon magnetic moments and radii

    Full text link
    A calculation of the current-quark-mass-dependence of nucleon static electromagnetic properties is necessary in order to use observational data as a means to place constraints on the variation of Nature's fundamental parameters. A Poincare' covariant Faddeev equation, which describes baryons as composites of confined-quarks and -nonpointlike-diquarks, is used to calculate this dependence The results indicate that, like observables dependent on the nucleons' magnetic moments, quantities sensitive to their magnetic and charge radii, such as the energy levels and transition frequencies in Hydrogen and Deuterium, might also provide a tool with which to place limits on the allowed variation in Nature's constants.Comment: 23 pages, 2 figures, 4 tables, 4 appendice
    corecore