348 research outputs found
Change in Right Inferior Longitudinal Fasciculus Integrity Is Associated With Naming Recovery in Subacute Poststroke Aphasia
Background. Despite progress made in understanding functional reorganization patterns underlying recovery in subacute aphasia, the relation between recovery and changes in white matter structure remains unclear. Objective. To investigate changes in dorsal and ventral language white matter tract integrity in relation to naming recovery in subacute poststroke aphasia. Methods. Ten participants with aphasia after left-hemisphere stroke underwent language testing and diffusion tensor imaging twice within 3 months post onset, with a 1-month interval between sessions. Deterministic tractography was used to bilaterally reconstruct the superior longitudinal fasciculus (SLF), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), middle longitudinal fasciculus (MdLF), and uncinate fasciculus (UF). Per tract, the mean fractional anisotropy (FA) was extracted as a measure of microstructural integrity. Naming accuracy was assessed with the Boston Naming Test (BNT). Correlational analyses were performed to investigate the relationship between changes in FA values and change in BNT score. Results. A strong positive correlation was found between FA change in the right ILF within the ventral stream and change on the BNT (r = 0.91, P <.001). An increase in FA in the right ILF was associated with considerable improvement of naming accuracy (range BNT change score: 12-14), a reduction with limited improvement or slight deterioration. No significant correlations were found between change in naming accuracy and FA change in any of the other right or left ventral and dorsal language tracts. Conclusions. Naming recovery in subacute aphasia is associated with change in the integrity of the right ILF
The unusual kinetics of lactate dehydrogenase of Schistosoma mansoni and their role in the rapid metabolic switch after penetration of the mammalian host
Lactate dehydrogenase (LDH) from Schistosoma mansoni has peculiar properties for a eukaryotic LDH. Schistosomal LDH (SmLDH) isolated from schistosomes, and the recombinantly expressed protein, are strongly inhibited by ATP, which is neutralized by fructose-1,6-bisphosphate (FBP). In the conserved FBP/anion binding site we identified two residues in SmLDH (Val187 and Tyr190) that differ from the conserved residues in LDHs of other eukaryotes, but are identical to conserved residues in FBP-sensitive prokaryotic LDHs. Three-dimensional (3D) models were generated to compare the structure of SmLDH with other LDHs. These models indicated that residues Val187, and especially Tyr190, play a crucial role in the interaction of FBP with the anion pocket of SmLDH. These 3D models of SmLDH are also consistent with a competitive model of SmLDH inhibition in which ATP (inhibitor) and FBP (activator) compete for binding in a well-defined anion pocket. The model of bound ATP predicts a distortion of the nearby key catalytic residue His195, resulting in enzyme inhibition. To investigate a possible physiological role of this allosteric regulation of LDH in schistosomes we made a kinetic model in which the allosteric regulation of the glycolytic enzymes can be varied. The model showed that inhibition of LDH by ATP prevents fermentation to lactate in the free-living stages in water and ensures complete oxidation via the Krebs cycle of the endogenous glycogen reserves. This mechanism of allosteric inhibition by ATP prevents the untimely depletion of these glycogen reserves, the only fuel of the free-living cercariae. Neutralization by FBP of this ATP inhibition of LDH prevents accumulation of glycolytic intermediates when S. mansoni schistosomula are confronted with the sudden large increase in glucose availability upon penetration of the final host. It appears that the LDH of S. mansoni is special and well suited to deal with the variations in glucose availability the parasite encounters during its life cycle.</p
Bacteriophage therapy reduces Staphylococcus aureus in a porcine and human ex vivo burn wound infection model
Burn wounds are a major burden, with high mortality rates due to infections. Staphylococcus aureus is a major causative agent of burn wound infections, which can be difficult to treat because of antibiotic resistance and biofilm formation. An alternative to antibiotics is the use of bacteriophages, viruses that infect and kill bacteria. We investigated the efficacy of bacteriophage therapy for burn wound infections, in both a porcine and a newly developed human ex vivo skin model. In both models, the efficacy of a reference antibiotic treatment (fusidic acid) and bacteriophage treatment was determined for a single treatment, successive treatment, and prophylaxis. Both models showed a reduction in bacterial load after a single bacteriophage treatment. Increasing the frequency of bacteriophage treatments increased bacteriophage efficacy in the human ex vivo skin model, but not in the porcine model. In both models, prophylaxis with bacteriophages increased treatment efficacy. In all cases, bacteriophage treatment outperformed fusidic acid treatment. Both models allowed investigation of bacteriophage-bacteria dynamics in burn wounds. Overall, bacteriophage treatment outperformed antibiotic control underlining the potential of bacteriophage therapy for the treatment of burn wound infections, especially when used prophylactically
COVID-19 in health-care workers in three hospitals in the south of the Netherlands:A cross-sectional study
Background: 10 days after the first reported case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the Netherlands (on Feb 27, 2020), 55 (4%) of 1497 health-care workers in nine hospitals located in the south of the Netherlands had tested positive for SARS-CoV-2 RNA. We aimed to gain insight in possible sources of infection in health-care workers. Methods: We did a cross-sectional study at three of the nine hospitals located in the south of the Netherlands. We screened health-care workers at the participating hospitals for SARS-CoV-2 infection, based on clinical symptoms (fever or mild respiratory symptoms) in the 10 days before screening. We obtained epidemiological data through structured interviews with health-care workers and combined this information with data from whole-genome sequencing of SARS-CoV-2 in clinical samples taken from health-care workers and patients. We did an in-depth analysis of sources and modes of transmission of SARS-CoV-2 in health-care workers and patients. Findings: Between March 2 and March 12, 2020, 1796 (15%) of 12 022 health-care workers were screened, of whom 96 (5%) tested positive for SARS-CoV-2. We obtained complete and near-complete genome sequences from 50 health-care workers and ten patients. Most sequences were grouped in three clusters, with two clusters showing local circulation within the region. The noted patterns were consistent with multiple introductions into the hospitals through community-acquired infections and local amplification in the community. Interpretation: Although direct transmission in the hospitals cannot be ruled out, our data do not support widespread nosocomial transmission as the source of infection in patients or health-care workers. Funding: EU Horizon 2020 (RECoVer, VEO, and the European Joint Programme One Health METASTAVA), and the National Institute of Allergy and Infectious Diseases, National Institutes of Health
Proton Pump Inhibitor Use, Fatigue, and Health-Related Quality of Life in Kidney Transplant Recipients:Results From the TransplantLines Biobank and Cohort Study
Rationale & Objective: Prior studies report that the use of proton pump inhibitors (PPIs) can adversely affect gut microbiota and gastrointestinal uptake of micronutrients, in particular iron and magnesium, and are used frequently by kidney transplant recipients. Altered gut microbiota, iron deficiency, and magnesium deficiency have been implicated in the pathogenesis of chronic fatigue. Therefore, we hypothesized that PPI use may be an important and underappreciated cause of fatigue and reduced health-related quality of life (HRQoL) in this population. Study Design: Cross-sectional study. Setting & Participants: Kidney transplant recipients (â„1 year after transplantation) enrolled in the TransplantLines Biobank and Cohort Study. Exposure: PPI use, PPI type, PPI dosage, and duration of PPI use. Outcome: Fatigue and HRQoL, assessed using the validated Checklist Individual Strength 20 Revised questionnaire and Short Form-36 questionnaire. Analytical Approach: Logistic and linear regression. Results: We included 937 kidney transplant recipients (mean age 56 ± 13 years, 39% female) at a median of 3 (1-10) years after transplantation. PPI use was associated with fatigue severity (regression coefficient 4.02, 95% CI, 2.18 to 5.85, P < 0.001), a higher risk of severe fatigue (OR 2.05, 95% CI, 1.48 to 2.84, P < 0.001), lower physical HRQoL (regression coefficient â8.54, 95% CI, â11.54 to â5.54, P < 0.001), and lower mental HRQoL (regression coefficient â4.66, 95% CI, â7.15 to â2.17, P < 0.001). These associations were independent of potential confounders including age, time since transplantation, history of upper gastrointestinal disease, antiplatelet therapy, and the total number of medications. They were present among all individually assessed PPI types and were dose dependent. Duration of PPI exposure was only associated with fatigue severity. Limitations: Residual confounding and inability to assess causal relationships. Conclusions: PPI use is independently associated with fatigue and lower HRQoL among kidney transplant recipients. PPI use might be an easily accessible target for alleviating fatigue and improving HRQoL among kidney transplant recipients. Further studies examining the effect of PPI exposure in this population are warranted. Plain-Language Summary: In this observational study, we investigated the association of proton pump inhibitors with fatigue and health-related quality of life among kidney transplant recipients. Our data showed that proton pump inhibitors were independently associated with fatigue severity, severe fatigue, and lower physical and mental health-related quality of life. These associations were present among all individually assessed proton pump inhibitor types and were dose dependent. While we await future studies on this topic, proton pump inhibitor use might be an easily accessible target for alleviating fatigue and improving health-related quality of life among kidney transplant recipients.</p
Elevated risk of infection with SARS-CoV-2 Beta, Gamma, and Delta variants compared with Alpha variant in vaccinated individuals
The extent to which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) break through infection- or vaccine-induced immunity is not well understood. We analyzed 28,578 sequenced SARS-CoV-2 samples from individuals with known immune status obtained through national community testing in the Netherlands from March to August 2021. We found evidence of an increased risk of infection by the Beta (B.1.351), Gamma (P.1), or Delta (B.1.617.2) variants compared with the Alpha (B.1.1.7) variant after vaccination. No clear differences were found between vaccines. However, the effect was larger in the first 14 to 59 days after complete vaccination compared with â„60 days. In contrast to vaccine-induced immunity, there was no increased risk for reinfection with Beta, Gamma, or Delta variants relative to the Alpha variant in individuals with infection-induced immunity.</p
Updated Nucleosynthesis Constraints on Unstable Relic Particles
We revisit the upper limits on the abundance of unstable massive relic
particles provided by the success of Big-Bang Nucleosynthesis calculations. We
use the cosmic microwave background data to constrain the baryon-to-photon
ratio, and incorporate an extensively updated compilation of cross sections
into a new calculation of the network of reactions induced by electromagnetic
showers that create and destroy the light elements deuterium, he3, he4, li6 and
li7. We derive analytic approximations that complement and check the full
numerical calculations. Considerations of the abundances of he4 and li6 exclude
exceptional regions of parameter space that would otherwise have been permitted
by deuterium alone. We illustrate our results by applying them to massive
gravitinos. If they weigh ~100 GeV, their primordial abundance should have been
below about 10^{-13} of the total entropy. This would imply an upper limit on
the reheating temperature of a few times 10^7 GeV, which could be a potential
difficulty for some models of inflation. We discuss possible ways of evading
this problem.Comment: 40 pages LaTeX, 18 eps figure
The detection of a strong episignature for ChungâJansen syndrome, partially overlapping with BörjesonâForssmanâLehmann and WhiteâKernohan syndromes
Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for ChungâJansen syndrome. In addition, we observed similarities between the methylation profile of ChungâJansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, WhiteâKernohan syndrome (caused by variants in DDB1 gene) and BörjesonâForssmanâLehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related ChungâJansen, BörjesonâForssmanâLehmann and WhiteâKernohan syndromes.</p
Modern NMR spectroscopy of proteins and peptides in solution and its relevance to drug design
The knowledge of the three-dimensional (3D) structures and conformational dynamics of proteins and peptides is important for the understanding of biochemical and genetic data derived for these molecules. This understanding can ultimately be of help in drug design. We describe here the role of Nuclear Magnetic Resonance (NMR) spectroscopy in this process for three distinct situations: for small proteins, where relatively simple NMR methods can be used for full 3D structure determination; for larger proteins that require multinuclear multidimensional NMR but for which full 3D structures can still be obtained; and for small peptides that are studied in interaction with macromolecules (receptors) using specialized NMR techniques. A fourth situation, pertaining to large systems where only partial structural information can be obtained from NMR data, is briefly discussed. Molecules of interest to the biomedical field (C5a and stromelysin) are discussed as examples.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43356/1/11091_2005_Article_BF02174537.pd
- âŠ