6 research outputs found

    Molecularly Imprinted Microrods via Mesophase Polymerization

    No full text
    The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs) with a rod-like geometry via “mesophase polymerization”. The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS), water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs) were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology

    Smart tools and orthogonal click-like reactions onto small unilamellar vesicles: Additional molecular data

    Get PDF
    We present here the synthetic routes and the experimental data (NMR and MS spectra) for model reactions for copper-free Huisgen 1,4-cycloaddition, Staudinger ligation and for addition of a dithiol on a dibromomaleimide ring. Starting materials were synthesized from the commercially available 4-chlorophenethylamine, previously described 2-(cyclooct-2-yn-1-yloxy)acetic acid, 1-fluorocyclooct-2-ynecarboxylic acid, commercial 2-(diphenylphosphino)terephthalic acid 1-methyl 4-pentafluorophenyl diester and dibromomaleimide. In all cases, the expected compounds were obtained with good yield (50% to quantitative). A novel synthesis of the lipid anchor DOGP3NH2 is also described. These data were used as basis for the study reported in the article “Smart Tools and Orthogonal Click-like Reactions onto Small Unilamellar Vesicles” in Chemistry and Physics of Lipids [1]

    Solubilization of α-galactosylceramide in aqueous medium: Impact on Natural Killer T cell activation and antitumor responses

    No full text
    International audienceThe potent antitumor effect of α-galactosylceramide (α-GalCer) is based on its recognition by invariant Natural Killer T cells (iNKT) after its capture and presentation by antigen presenting cells including dendritic cells (DCs). Synthetic α-GalCer has already been tested in advanced cancer patients but no or only moderate clinical responses were obtained.To optimize α-GalCer efficacy, we have postulated that alternative formulations impacting its molecular organization in aqueous medium could modify DC uptake and iNKT-based immune responses. To this end, we have developed two strategies: (1) the formulation of α-GalCer in non-cationic liposomes and (2) the synthesis of a water-soluble α-GalCer analogue by anchoring a polyethyleneglycol moiety on its sugar head. The biological activities of these new preparations were compared to that induced by the classically used Polysorbate 20 α-GalCer micelles. Both formulations retained their uptake by DCs and activated iNKT cells both in vitro and in vivo. Despite a lower cytokine production, the formulations induced a potent immune response able to control lung murine carcinoma. In conclusion, it is possible to increase α-GalCer solubility in aqueous solution without limiting its antitumor properties
    corecore