7 research outputs found
Electron-Deficient Ternary and Quaternary Pnictides Rb<sub>4</sub>Zn<sub>7</sub>As<sub>7</sub>, Rb<sub>4</sub>Mn<sub>3.5</sub>Zn<sub>3.5</sub>Sb<sub>7</sub>, Rb<sub>7</sub>Mn<sub>12</sub>Sb<sub>12</sub>, and Rb<sub>7</sub>Mn<sub>4</sub>Cd<sub>8</sub>Sb<sub>12</sub> with Corrugated Anionic Layers
The
ternary pnictides Rb<sub>4</sub>Zn<sub>7</sub>As<sub>7</sub> and Rb<sub>7</sub>Mn<sub>12</sub>Sb<sub>12</sub> and their quaternary derivatives
Rb<sub>4</sub>Mn<sub>3.5</sub>Zn<sub>3.5</sub>Sb<sub>7</sub> and Rb<sub>7</sub>Mn<sub>4</sub>Cd<sub>8</sub>Sb<sub>12</sub> have been prepared
by reactions of the elements at 600 °C. They crystallize in two
new structure types: orthorhombic Rb<sub>4</sub>Zn<sub>7</sub>As<sub>7</sub>-type (space group <i>Cmcm</i>, <i>Z</i> = 4; <i>a</i> = 4.1883(4) Ã…, <i>b</i> =
24.844(2) Ã…, <i>c</i> = 17.6056(17) Ã… for Rb<sub>4</sub>Zn<sub>7</sub>As<sub>7</sub>; <i>a</i> = 4.3911(8)
Ã…, <i>b</i> = 26.546(5) Ã…, <i>c</i> =
18.743(4) Ã… for Rb<sub>4</sub>Mn<sub>3.5</sub>Zn<sub>3.5</sub>Sb<sub>7</sub>) and monoclinic Rb<sub>7</sub>Mn<sub>12</sub>Sb<sub>12</sub>-type (space group <i>C</i>2/<i>m</i>, <i>Z</i> = 2; <i>a</i> = 26.544(12) Ã…, <i>b</i> = 4.448(2) Ã…, <i>c</i> = 16.676(8) Ã…,
β = 103.183(8)° for Rb<sub>7</sub>Mn<sub>12</sub>Sb<sub>12</sub>; <i>a</i> = 27.009(4) Å, <i>b</i> = 4.5752(7) Å, <i>c</i> = 16.727(3) Å, β
= 103.221(2)° for Rb<sub>7</sub>Mn<sub>4</sub>Cd<sub>8</sub>Sb<sub>12</sub>). These related structures contain corrugated anionic layers
built up by connecting ribbons of edge-sharing tetrahedra in a zigzag-like
manner with chains of Mn-centered square pyramids located at the hinges.
Homoatomic pnicogen–pnicogen bonding occurs in the form of
Pn<sub>2</sub> pairs. The compounds are formally deficient by one
electron per formula unit, as confirmed by band structure calculations
which reveal the location of the Fermi level just below a small gap
in Rb<sub>4</sub>Zn<sub>7</sub>As<sub>7</sub> or a pseudogap in Rb<sub>7</sub>Mn<sub>12</sub>Sb<sub>12</sub>
Ternary Arsenides A<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> (A = K, Rb): Zintl Phases Built from <i>Stellae Quadrangulae</i>
Stoichiometric reaction of the elements at high temperature
yields
the ternary arsenides K<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> (650
°C) and Rb<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> (600 °C).
They adopt a new structure type (Pearson symbol <i>oC</i>44, space group <i>Cmcm</i>, <i>Z</i> = 4; <i>a</i> = 11.5758(5) Ã…, <i>b</i> = 7.0476(3) Ã…, <i>c</i> = 11.6352(5) Ã… for K<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub>; <i>a</i> = 11.6649(5) Ã…, <i>b</i> = 7.0953(3) Ã…, <i>c</i> = 11.7585(5) Ã… for Rb<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub>) with a complex three-dimensional
framework of linked ZnAs<sub>4</sub> tetrahedra generating large channels
that are occupied by the alkali-metal cations. An alternative and
useful way of describing the structure is through the use of <i>stellae quadrangulae</i> each consisting of four ZnAs<sub>4</sub> tetrahedra capping an empty central tetrahedron. These compounds
are Zintl phases; band structure calculations on K<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> and Rb<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> indicate semiconducting behavior with a direct band gap of 0.4 eV
Ternary Arsenides A<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> (A = K, Rb): Zintl Phases Built from <i>Stellae Quadrangulae</i>
Stoichiometric reaction of the elements at high temperature
yields
the ternary arsenides K<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> (650
°C) and Rb<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> (600 °C).
They adopt a new structure type (Pearson symbol <i>oC</i>44, space group <i>Cmcm</i>, <i>Z</i> = 4; <i>a</i> = 11.5758(5) Ã…, <i>b</i> = 7.0476(3) Ã…, <i>c</i> = 11.6352(5) Ã… for K<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub>; <i>a</i> = 11.6649(5) Ã…, <i>b</i> = 7.0953(3) Ã…, <i>c</i> = 11.7585(5) Ã… for Rb<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub>) with a complex three-dimensional
framework of linked ZnAs<sub>4</sub> tetrahedra generating large channels
that are occupied by the alkali-metal cations. An alternative and
useful way of describing the structure is through the use of <i>stellae quadrangulae</i> each consisting of four ZnAs<sub>4</sub> tetrahedra capping an empty central tetrahedron. These compounds
are Zintl phases; band structure calculations on K<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> and Rb<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> indicate semiconducting behavior with a direct band gap of 0.4 eV
Quaternary Arsenides <i>A</i>CdGeAs<sub>2</sub> (<i>A</i> = K, Rb) Built of Ethane-Like Ge<sub>2</sub>As<sub>6</sub> Units
Reactions
of the elements at high temperature resulted in the quaternary arsenides
KCdGeAs<sub>2</sub> (650 °C) and RbCdGeAs<sub>2</sub> (600 °C).
Single-crystal X-ray diffraction analysis reveals that they adopt
a new triclinic structure type (space group <i>P</i>1Ì…,
Pearson symbol <i>aP</i>20, <i>Z</i> = 4; <i>a</i> = 8.0040(18) Å, <i>b</i> = 8.4023(19) Å, <i>c</i> = 8.703(2) Å, α = 71.019(3)°, β
= 75.257(3)°, γ = 73.746(3)° for KCdGeAs<sub>2</sub>; <i>a</i> = 8.2692(13) Å, <i>b</i> = 8.4519(13)
Å, <i>c</i> = 8.7349(13) Å, α = 71.163(2)°,
β = 75.601(2)°, γ = 73.673(2)° for RbCdGeAs<sub>2</sub>). Two-dimensional anionic layers [CdGeAs<sub>2</sub>]<sup>−</sup> are separated by <i>A</i><sup>+</sup> cations
and are built from ethane-like Ge<sub>2</sub>As<sub>6</sub> units
forming infinite chains connected via three- and four-coordinated
Cd atoms. Being Zintl phases, these compounds satisfy charge balance
and are expected to be semiconducting, as confirmed by band structure
calculations on KCdGeAs<sub>2</sub>, which reveal a band gap of 0.8
eV. KCdGeAs<sub>2</sub> is diamagnetic
Ternary Arsenides A<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> (A = Sr, Eu) and Their Stuffed Derivatives A<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub>
The ternary arsenides A<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> and the quaternary derivatives A<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub> (A = Sr, Eu) have been prepared by stoichiometric
reaction
of the elements at 800 °C. Compounds A<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> crystallize with the monoclinic Ba<sub>2</sub>Cd<sub>2</sub>Sb<sub>3</sub>-type structure (Pearson symbol <i>mC</i>28, space group <i>C</i>2/<i>m</i>, <i>Z</i> = 4; <i>a</i> = 16.212(5) Å, <i>b</i> =
4.275(1) Å, <i>c</i> = 11.955(3) Å, β =
126.271(3)° for Sr<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub>; <i>a</i> = 16.032(4) Å, <i>b</i> = 4.255(1) Å, <i>c</i> = 11.871(3) Å, β = 126.525(3)° for Eu<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub>) in which CaAl<sub>2</sub>Si<sub>2</sub>-type fragments, built up of edge-sharing Zn-centered tetrahedra,
are interconnected by homoatomic As–As bonds to form anionic
slabs [Zn<sub>2</sub>As<sub>3</sub>]<sup>4–</sup> separated
by A<sup>2+</sup> cations. Compounds A<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub> crystallize with the monoclinic Yb<sub>2</sub>Zn<sub>3</sub>Ge<sub>3</sub>-type structure (Pearson symbol <i>mC</i>32, space group <i>C</i>2/<i>m</i>; <i>a</i> = 16.759(2) Å, <i>b</i> = 4.4689(5) Å, <i>c</i> = 12.202(1) Å, β = 127.058(1)° for Sr<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub>; <i>a</i> = 16.427(1)
Ã…, <i>b</i> = 4.4721(3) Ã…, <i>c</i> =
11.9613(7) Å, β = 126.205(1)° for Eu<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub>), which can be regarded as a stuffed derivative
of the Ba<sub>2</sub>Cd<sub>2</sub>Sb<sub>3</sub>-type structure with
additional transition-metal atoms in tetrahedral coordination inserted
to link the anionic slabs together. The Ag and Zn atoms undergo disorder
but with preferential occupancy over four sites centered in either
tetrahedral or trigonal planar geometry. The site distribution of
these metal atoms depends on a complex interplay of size and electronic
factors. All compounds are Zintl phases. Band structure calculations
predict that Sr<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> is a narrow
band gap semiconductor and Sr<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub> is a semimetal. Electrical resistivity measurements revealed band
gaps of 0.04 eV for Sr<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> and
0.02 eV for Eu<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub>, the latter
undergoing an apparent metal-to-semiconductor transition at 25 K
Ternary Arsenides A<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> (A = Sr, Eu) and Their Stuffed Derivatives A<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub>
The ternary arsenides A<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> and the quaternary derivatives A<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub> (A = Sr, Eu) have been prepared by stoichiometric
reaction
of the elements at 800 °C. Compounds A<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> crystallize with the monoclinic Ba<sub>2</sub>Cd<sub>2</sub>Sb<sub>3</sub>-type structure (Pearson symbol <i>mC</i>28, space group <i>C</i>2/<i>m</i>, <i>Z</i> = 4; <i>a</i> = 16.212(5) Å, <i>b</i> =
4.275(1) Å, <i>c</i> = 11.955(3) Å, β =
126.271(3)° for Sr<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub>; <i>a</i> = 16.032(4) Å, <i>b</i> = 4.255(1) Å, <i>c</i> = 11.871(3) Å, β = 126.525(3)° for Eu<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub>) in which CaAl<sub>2</sub>Si<sub>2</sub>-type fragments, built up of edge-sharing Zn-centered tetrahedra,
are interconnected by homoatomic As–As bonds to form anionic
slabs [Zn<sub>2</sub>As<sub>3</sub>]<sup>4–</sup> separated
by A<sup>2+</sup> cations. Compounds A<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub> crystallize with the monoclinic Yb<sub>2</sub>Zn<sub>3</sub>Ge<sub>3</sub>-type structure (Pearson symbol <i>mC</i>32, space group <i>C</i>2/<i>m</i>; <i>a</i> = 16.759(2) Å, <i>b</i> = 4.4689(5) Å, <i>c</i> = 12.202(1) Å, β = 127.058(1)° for Sr<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub>; <i>a</i> = 16.427(1)
Ã…, <i>b</i> = 4.4721(3) Ã…, <i>c</i> =
11.9613(7) Å, β = 126.205(1)° for Eu<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub>), which can be regarded as a stuffed derivative
of the Ba<sub>2</sub>Cd<sub>2</sub>Sb<sub>3</sub>-type structure with
additional transition-metal atoms in tetrahedral coordination inserted
to link the anionic slabs together. The Ag and Zn atoms undergo disorder
but with preferential occupancy over four sites centered in either
tetrahedral or trigonal planar geometry. The site distribution of
these metal atoms depends on a complex interplay of size and electronic
factors. All compounds are Zintl phases. Band structure calculations
predict that Sr<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> is a narrow
band gap semiconductor and Sr<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub> is a semimetal. Electrical resistivity measurements revealed band
gaps of 0.04 eV for Sr<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> and
0.02 eV for Eu<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub>, the latter
undergoing an apparent metal-to-semiconductor transition at 25 K
Quaternary Arsenides <i>AM</i><sub>1.5</sub><i>Tt</i><sub>0.5</sub>As<sub>2</sub> (<i>A</i> = Na, K, Rb; <i>M</i> = Zn, Cd; <i>Tt</i> = Si, Ge, Sn): Size Effects in CaAl<sub>2</sub>Si<sub>2</sub>- and ThCr<sub>2</sub>Si<sub>2</sub>‑Type Structures
Ten
quaternary arsenides <i>AM</i><sub>1.5</sub><i>Tt</i><sub>0.5</sub>As<sub>2</sub> (<i>A</i> = Na, K, Rb; <i>M</i> = Zn, Cd; <i>Tt</i> = Si, Ge, Sn) have been
prepared by stoichiometric reactions of the elements at 600–650
°C. Seven of them (NaZn<sub>1.5</sub>Si<sub>0.5</sub>As<sub>2</sub>, NaZn<sub>1.5</sub>Ge<sub>0.5</sub>As<sub>2</sub>, NaZn<sub>1.5</sub>Sn<sub>0.5</sub>As<sub>2</sub>, NaCd<sub>1.5</sub>Sn<sub>0.5</sub>As<sub>2</sub>, KZn<sub>1.5</sub>Sn<sub>0.5</sub>As<sub>2</sub>,
KCd<sub>1.5</sub>Sn<sub>0.5</sub>As<sub>2</sub>, RbCd<sub>1.5</sub>Sn<sub>0.5</sub>As<sub>2</sub>) adopt the trigonal CaAl<sub>2</sub>Si<sub>2</sub>-type structure (Pearson symbol <i>hP</i>5, space group <i>P</i>3̅<i>m</i>1, <i>Z</i> = 1, <i>a</i> = 4.0662(3)–4.4263(7) Å, <i>c</i> = 7.4120(5)–8.4586(14) Å), whereas the remaining
three (KZn<sub>1.5</sub>Si<sub>0.5</sub>As<sub>2</sub>, KZn<sub>1.5</sub>Ge<sub>0.5</sub>As<sub>2</sub>, RbZn<sub>1.5</sub>Ge<sub>0.5</sub>As<sub>2</sub>) adopt the tetragonal ThCr<sub>2</sub>Si<sub>2</sub>-type structure (Pearson symbol <i>tI</i>10, space group <i>I</i>4/<i>mmm</i>, <i>Z</i> = 2, <i>a</i> = 4.0613(10)–4.1157(5) Å, <i>c</i> = 14.258(3)–14.662(2) Å). Both structure types contain
anionic [<i>M</i><sub>1.5</sub><i>Tt</i><sub>0.5</sub>As<sub>2</sub>] slabs that are built from edge-sharing tetrahedra
and that stack alternately with nets of <i>A</i> cations.
A structure map delineates the formation of these structure types
for <i>AM</i><sub>1.5</sub><i>Tt</i><sub>0.5</sub>As<sub>2</sub> as a function of simple radius ratios. Although these
arsenides have charge-balanced formulations, band structure calculations
on NaZn<sub>1.5</sub><i>Tt</i><sub>0.5</sub>As<sub>2</sub> (<i>Tt</i> = Si, Ge, Sn) indicate that semimetallic behavior
is predicted as a result of overlap of the valence and conduction
bands