7 research outputs found

    Electron-Deficient Ternary and Quaternary Pnictides Rb<sub>4</sub>Zn<sub>7</sub>As<sub>7</sub>, Rb<sub>4</sub>Mn<sub>3.5</sub>Zn<sub>3.5</sub>Sb<sub>7</sub>, Rb<sub>7</sub>Mn<sub>12</sub>Sb<sub>12</sub>, and Rb<sub>7</sub>Mn<sub>4</sub>Cd<sub>8</sub>Sb<sub>12</sub> with Corrugated Anionic Layers

    No full text
    The ternary pnictides Rb<sub>4</sub>Zn<sub>7</sub>As<sub>7</sub> and Rb<sub>7</sub>Mn<sub>12</sub>Sb<sub>12</sub> and their quaternary derivatives Rb<sub>4</sub>Mn<sub>3.5</sub>Zn<sub>3.5</sub>Sb<sub>7</sub> and Rb<sub>7</sub>Mn<sub>4</sub>Cd<sub>8</sub>Sb<sub>12</sub> have been prepared by reactions of the elements at 600 °C. They crystallize in two new structure types: orthorhombic Rb<sub>4</sub>Zn<sub>7</sub>As<sub>7</sub>-type (space group <i>Cmcm</i>, <i>Z</i> = 4; <i>a</i> = 4.1883(4) Å, <i>b</i> = 24.844(2) Å, <i>c</i> = 17.6056(17) Å for Rb<sub>4</sub>Zn<sub>7</sub>As<sub>7</sub>; <i>a</i> = 4.3911(8) Å, <i>b</i> = 26.546(5) Å, <i>c</i> = 18.743(4) Å for Rb<sub>4</sub>Mn<sub>3.5</sub>Zn<sub>3.5</sub>Sb<sub>7</sub>) and monoclinic Rb<sub>7</sub>Mn<sub>12</sub>Sb<sub>12</sub>-type (space group <i>C</i>2/<i>m</i>, <i>Z</i> = 2; <i>a</i> = 26.544(12) Å, <i>b</i> = 4.448(2) Å, <i>c</i> = 16.676(8) Å, β = 103.183(8)° for Rb<sub>7</sub>Mn<sub>12</sub>Sb<sub>12</sub>; <i>a</i> = 27.009(4) Å, <i>b</i> = 4.5752(7) Å, <i>c</i> = 16.727(3) Å, β = 103.221(2)° for Rb<sub>7</sub>Mn<sub>4</sub>Cd<sub>8</sub>Sb<sub>12</sub>). These related structures contain corrugated anionic layers built up by connecting ribbons of edge-sharing tetrahedra in a zigzag-like manner with chains of Mn-centered square pyramids located at the hinges. Homoatomic pnicogen–pnicogen bonding occurs in the form of Pn<sub>2</sub> pairs. The compounds are formally deficient by one electron per formula unit, as confirmed by band structure calculations which reveal the location of the Fermi level just below a small gap in Rb<sub>4</sub>Zn<sub>7</sub>As<sub>7</sub> or a pseudogap in Rb<sub>7</sub>Mn<sub>12</sub>Sb<sub>12</sub>

    Ternary Arsenides A<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> (A = K, Rb): Zintl Phases Built from <i>Stellae Quadrangulae</i>

    No full text
    Stoichiometric reaction of the elements at high temperature yields the ternary arsenides K<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> (650 °C) and Rb<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> (600 °C). They adopt a new structure type (Pearson symbol <i>oC</i>44, space group <i>Cmcm</i>, <i>Z</i> = 4; <i>a</i> = 11.5758(5) Å, <i>b</i> = 7.0476(3) Å, <i>c</i> = 11.6352(5) Å for K<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub>; <i>a</i> = 11.6649(5) Å, <i>b</i> = 7.0953(3) Å, <i>c</i> = 11.7585(5) Å for Rb<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub>) with a complex three-dimensional framework of linked ZnAs<sub>4</sub> tetrahedra generating large channels that are occupied by the alkali-metal cations. An alternative and useful way of describing the structure is through the use of <i>stellae quadrangulae</i> each consisting of four ZnAs<sub>4</sub> tetrahedra capping an empty central tetrahedron. These compounds are Zintl phases; band structure calculations on K<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> and Rb<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> indicate semiconducting behavior with a direct band gap of 0.4 eV

    Ternary Arsenides A<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> (A = K, Rb): Zintl Phases Built from <i>Stellae Quadrangulae</i>

    No full text
    Stoichiometric reaction of the elements at high temperature yields the ternary arsenides K<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> (650 °C) and Rb<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> (600 °C). They adopt a new structure type (Pearson symbol <i>oC</i>44, space group <i>Cmcm</i>, <i>Z</i> = 4; <i>a</i> = 11.5758(5) Å, <i>b</i> = 7.0476(3) Å, <i>c</i> = 11.6352(5) Å for K<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub>; <i>a</i> = 11.6649(5) Å, <i>b</i> = 7.0953(3) Å, <i>c</i> = 11.7585(5) Å for Rb<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub>) with a complex three-dimensional framework of linked ZnAs<sub>4</sub> tetrahedra generating large channels that are occupied by the alkali-metal cations. An alternative and useful way of describing the structure is through the use of <i>stellae quadrangulae</i> each consisting of four ZnAs<sub>4</sub> tetrahedra capping an empty central tetrahedron. These compounds are Zintl phases; band structure calculations on K<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> and Rb<sub>2</sub>Zn<sub>5</sub>As<sub>4</sub> indicate semiconducting behavior with a direct band gap of 0.4 eV

    Quaternary Arsenides <i>A</i>CdGeAs<sub>2</sub> (<i>A</i> = K, Rb) Built of Ethane-Like Ge<sub>2</sub>As<sub>6</sub> Units

    No full text
    Reactions of the elements at high temperature resulted in the quaternary arsenides KCdGeAs<sub>2</sub> (650 °C) and RbCdGeAs<sub>2</sub> (600 °C). Single-crystal X-ray diffraction analysis reveals that they adopt a new triclinic structure type (space group <i>P</i>1̅, Pearson symbol <i>aP</i>20, <i>Z</i> = 4; <i>a</i> = 8.0040(18) Å, <i>b</i> = 8.4023(19) Å, <i>c</i> = 8.703(2) Å, α = 71.019(3)°, β = 75.257(3)°, γ = 73.746(3)° for KCdGeAs<sub>2</sub>; <i>a</i> = 8.2692(13) Å, <i>b</i> = 8.4519(13) Å, <i>c</i> = 8.7349(13) Å, α = 71.163(2)°, β = 75.601(2)°, γ = 73.673(2)° for RbCdGeAs<sub>2</sub>). Two-dimensional anionic layers [CdGeAs<sub>2</sub>]<sup>−</sup> are separated by <i>A</i><sup>+</sup> cations and are built from ethane-like Ge<sub>2</sub>As<sub>6</sub> units forming infinite chains connected via three- and four-coordinated Cd atoms. Being Zintl phases, these compounds satisfy charge balance and are expected to be semiconducting, as confirmed by band structure calculations on KCdGeAs<sub>2</sub>, which reveal a band gap of 0.8 eV. KCdGeAs<sub>2</sub> is diamagnetic

    Ternary Arsenides A<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> (A = Sr, Eu) and Their Stuffed Derivatives A<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub>

    No full text
    The ternary arsenides A<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> and the quaternary derivatives A<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub> (A = Sr, Eu) have been prepared by stoichiometric reaction of the elements at 800 °C. Compounds A<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> crystallize with the monoclinic Ba<sub>2</sub>Cd<sub>2</sub>Sb<sub>3</sub>-type structure (Pearson symbol <i>mC</i>28, space group <i>C</i>2/<i>m</i>, <i>Z</i> = 4; <i>a</i> = 16.212(5) Å, <i>b</i> = 4.275(1) Å, <i>c</i> = 11.955(3) Å, β = 126.271(3)° for Sr<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub>; <i>a</i> = 16.032(4) Å, <i>b</i> = 4.255(1) Å, <i>c</i> = 11.871(3) Å, β = 126.525(3)° for Eu<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub>) in which CaAl<sub>2</sub>Si<sub>2</sub>-type fragments, built up of edge-sharing Zn-centered tetrahedra, are interconnected by homoatomic As–As bonds to form anionic slabs [Zn<sub>2</sub>As<sub>3</sub>]<sup>4–</sup> separated by A<sup>2+</sup> cations. Compounds A<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub> crystallize with the monoclinic Yb<sub>2</sub>Zn<sub>3</sub>Ge<sub>3</sub>-type structure (Pearson symbol <i>mC</i>32, space group <i>C</i>2/<i>m</i>; <i>a</i> = 16.759(2) Å, <i>b</i> = 4.4689(5) Å, <i>c</i> = 12.202(1) Å, β = 127.058(1)° for Sr<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub>; <i>a</i> = 16.427(1) Å, <i>b</i> = 4.4721(3) Å, <i>c</i> = 11.9613(7) Å, β = 126.205(1)° for Eu<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub>), which can be regarded as a stuffed derivative of the Ba<sub>2</sub>Cd<sub>2</sub>Sb<sub>3</sub>-type structure with additional transition-metal atoms in tetrahedral coordination inserted to link the anionic slabs together. The Ag and Zn atoms undergo disorder but with preferential occupancy over four sites centered in either tetrahedral or trigonal planar geometry. The site distribution of these metal atoms depends on a complex interplay of size and electronic factors. All compounds are Zintl phases. Band structure calculations predict that Sr<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> is a narrow band gap semiconductor and Sr<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub> is a semimetal. Electrical resistivity measurements revealed band gaps of 0.04 eV for Sr<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> and 0.02 eV for Eu<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub>, the latter undergoing an apparent metal-to-semiconductor transition at 25 K

    Ternary Arsenides A<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> (A = Sr, Eu) and Their Stuffed Derivatives A<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub>

    No full text
    The ternary arsenides A<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> and the quaternary derivatives A<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub> (A = Sr, Eu) have been prepared by stoichiometric reaction of the elements at 800 °C. Compounds A<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> crystallize with the monoclinic Ba<sub>2</sub>Cd<sub>2</sub>Sb<sub>3</sub>-type structure (Pearson symbol <i>mC</i>28, space group <i>C</i>2/<i>m</i>, <i>Z</i> = 4; <i>a</i> = 16.212(5) Å, <i>b</i> = 4.275(1) Å, <i>c</i> = 11.955(3) Å, β = 126.271(3)° for Sr<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub>; <i>a</i> = 16.032(4) Å, <i>b</i> = 4.255(1) Å, <i>c</i> = 11.871(3) Å, β = 126.525(3)° for Eu<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub>) in which CaAl<sub>2</sub>Si<sub>2</sub>-type fragments, built up of edge-sharing Zn-centered tetrahedra, are interconnected by homoatomic As–As bonds to form anionic slabs [Zn<sub>2</sub>As<sub>3</sub>]<sup>4–</sup> separated by A<sup>2+</sup> cations. Compounds A<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub> crystallize with the monoclinic Yb<sub>2</sub>Zn<sub>3</sub>Ge<sub>3</sub>-type structure (Pearson symbol <i>mC</i>32, space group <i>C</i>2/<i>m</i>; <i>a</i> = 16.759(2) Å, <i>b</i> = 4.4689(5) Å, <i>c</i> = 12.202(1) Å, β = 127.058(1)° for Sr<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub>; <i>a</i> = 16.427(1) Å, <i>b</i> = 4.4721(3) Å, <i>c</i> = 11.9613(7) Å, β = 126.205(1)° for Eu<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub>), which can be regarded as a stuffed derivative of the Ba<sub>2</sub>Cd<sub>2</sub>Sb<sub>3</sub>-type structure with additional transition-metal atoms in tetrahedral coordination inserted to link the anionic slabs together. The Ag and Zn atoms undergo disorder but with preferential occupancy over four sites centered in either tetrahedral or trigonal planar geometry. The site distribution of these metal atoms depends on a complex interplay of size and electronic factors. All compounds are Zintl phases. Band structure calculations predict that Sr<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> is a narrow band gap semiconductor and Sr<sub>2</sub>Ag<sub>2</sub>ZnAs<sub>3</sub> is a semimetal. Electrical resistivity measurements revealed band gaps of 0.04 eV for Sr<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub> and 0.02 eV for Eu<sub>2</sub>Zn<sub>2</sub>As<sub>3</sub>, the latter undergoing an apparent metal-to-semiconductor transition at 25 K

    Quaternary Arsenides <i>AM</i><sub>1.5</sub><i>Tt</i><sub>0.5</sub>As<sub>2</sub> (<i>A</i> = Na, K, Rb; <i>M</i> = Zn, Cd; <i>Tt</i> = Si, Ge, Sn): Size Effects in CaAl<sub>2</sub>Si<sub>2</sub>- and ThCr<sub>2</sub>Si<sub>2</sub>‑Type Structures

    No full text
    Ten quaternary arsenides <i>AM</i><sub>1.5</sub><i>Tt</i><sub>0.5</sub>As<sub>2</sub> (<i>A</i> = Na, K, Rb; <i>M</i> = Zn, Cd; <i>Tt</i> = Si, Ge, Sn) have been prepared by stoichiometric reactions of the elements at 600–650 °C. Seven of them (NaZn<sub>1.5</sub>Si<sub>0.5</sub>As<sub>2</sub>, NaZn<sub>1.5</sub>Ge<sub>0.5</sub>As<sub>2</sub>, NaZn<sub>1.5</sub>Sn<sub>0.5</sub>As<sub>2</sub>, NaCd<sub>1.5</sub>Sn<sub>0.5</sub>As<sub>2</sub>, KZn<sub>1.5</sub>Sn<sub>0.5</sub>As<sub>2</sub>, KCd<sub>1.5</sub>Sn<sub>0.5</sub>As<sub>2</sub>, RbCd<sub>1.5</sub>Sn<sub>0.5</sub>As<sub>2</sub>) adopt the trigonal CaAl<sub>2</sub>Si<sub>2</sub>-type structure (Pearson symbol <i>hP</i>5, space group <i>P</i>3̅<i>m</i>1, <i>Z</i> = 1, <i>a</i> = 4.0662(3)–4.4263(7) Å, <i>c</i> = 7.4120(5)–8.4586(14) Å), whereas the remaining three (KZn<sub>1.5</sub>Si<sub>0.5</sub>As<sub>2</sub>, KZn<sub>1.5</sub>Ge<sub>0.5</sub>As<sub>2</sub>, RbZn<sub>1.5</sub>Ge<sub>0.5</sub>As<sub>2</sub>) adopt the tetragonal ThCr<sub>2</sub>Si<sub>2</sub>-type structure (Pearson symbol <i>tI</i>10, space group <i>I</i>4/<i>mmm</i>, <i>Z</i> = 2, <i>a</i> = 4.0613(10)–4.1157(5) Å, <i>c</i> = 14.258(3)–14.662(2) Å). Both structure types contain anionic [<i>M</i><sub>1.5</sub><i>Tt</i><sub>0.5</sub>As<sub>2</sub>] slabs that are built from edge-sharing tetrahedra and that stack alternately with nets of <i>A</i> cations. A structure map delineates the formation of these structure types for <i>AM</i><sub>1.5</sub><i>Tt</i><sub>0.5</sub>As<sub>2</sub> as a function of simple radius ratios. Although these arsenides have charge-balanced formulations, band structure calculations on NaZn<sub>1.5</sub><i>Tt</i><sub>0.5</sub>As<sub>2</sub> (<i>Tt</i> = Si, Ge, Sn) indicate that semimetallic behavior is predicted as a result of overlap of the valence and conduction bands
    corecore