21,323 research outputs found

    Formation of Topological Black holes from Gravitational Collapse

    Get PDF
    We consider the gravitational collapse of a dust cloud in an asymptotically anti de Sitter spacetime in which points connected by a discrete subgroup of an isometry subgroup of anti de Sitter spacetime are identified. We find that black holes with event horizons of any topology can form from the collapse of such a cloud. The quasilocal mass parameter of such black holes is proportional to the initial density, which can be arbitrarily small.Comment: latex, 16 pages, four postscript figure

    3-Body Dynamics in a (1+1) Dimensional Relativistic Self-Gravitating System

    Full text link
    The results of our study of the motion of a three particle, self-gravitating system in general relativistic lineal gravity is presented for an arbitrary ratio of the particle masses. We derive a canonical expression for the Hamiltonian of the system and discuss the numerical solution of the resulting equations of motion. This solution is compared to the corresponding non-relativistic and post-Newtonian approximation solutions so that the dynamics of the fully relativistic system can be interpretted as a correction to the one-dimensional Newtonian self-gravitating system. We find that the structure of the phase space of each of these systems yields a large variety of interesting dynamics that can be divided into three distinct regions: annulus, pretzel, and chaotic; the first two being regions of quasi-periodicity while the latter is a region of chaos. By changing the relative masses of the three particles we find that the relative sizes of these three phase space regions changes and that this deformation can be interpreted physically in terms of the gravitational interactions of the particles. Furthermore, we find that many of the interesting characteristics found in the case where all of the particles share the same mass also appears in our more general study. We find that there are additional regions of chaos in the unequal mass system which are not present in the equal mass case. We compare these results to those found in similar systems.Comment: latex, 26 pages, 17 figures, high quality figures available upon request; typos and grammar correcte

    Quasiclassical Coarse Graining and Thermodynamic Entropy

    Get PDF
    Our everyday descriptions of the universe are highly coarse-grained, following only a tiny fraction of the variables necessary for a perfectly fine-grained description. Coarse graining in classical physics is made natural by our limited powers of observation and computation. But in the modern quantum mechanics of closed systems, some measure of coarse graining is inescapable because there are no non-trivial, probabilistic, fine-grained descriptions. This essay explores the consequences of that fact. Quantum theory allows for various coarse-grained descriptions some of which are mutually incompatible. For most purposes, however, we are interested in the small subset of ``quasiclassical descriptions'' defined by ranges of values of averages over small volumes of densities of conserved quantities such as energy and momentum and approximately conserved quantities such as baryon number. The near-conservation of these quasiclassical quantities results in approximate decoherence, predictability, and local equilibrium, leading to closed sets of equations of motion. In any description, information is sacrificed through the coarse graining that yields decoherence and gives rise to probabilities for histories. In quasiclassical descriptions, further information is sacrificed in exhibiting the emergent regularities summarized by classical equations of motion. An appropriate entropy measures the loss of information. For a ``quasiclassical realm'' this is connected with the usual thermodynamic entropy as obtained from statistical mechanics. It was low for the initial state of our universe and has been increasing since.Comment: 17 pages, 0 figures, revtex4, Dedicated to Rafael Sorkin on his 60th birthday, minor correction

    N-body Gravity and the Schroedinger Equation

    Get PDF
    We consider the problem of the motion of NN bodies in a self-gravitating system in two spacetime dimensions. We point out that this system can be mapped onto the quantum-mechanical problem of an N-body generalization of the problem of the H2+_{2}^{+} molecular ion in one dimension. The canonical gravitational N-body formalism can be extended to include electromagnetic charges. We derive a general algorithm for solving this problem, and show how it reduces to known results for the 2-body and 3-body systems.Comment: 15 pages, Latex, references added, typos corrected, final version that appears in CQ

    Particles on a Circle in Canonical Lineal Gravity

    Get PDF
    A description of the canonical formulation of lineal gravity minimally coupled to N point particles in a circular topology is given. The Hamiltonian is found to be equal to the time-rate of change of the extrinsic curvature multiplied by the proper circumference of the circle. Exact solutions for pure gravity and for gravity coupled to a single particle are obtained. The presence of a single particle significantly modifies the spacetime evolution by either slowing down or reversing the cosmological expansion of the circle, depending upon the choice of parameters.Comment: 51 pages, 24 eps figures, late

    Decoherent Histories Quantum Mechanics with One 'Real' Fine-Grained History

    Get PDF
    Decoherent histories quantum theory is reformulated with the assumption that there is one "real" fine-grained history, specified in a preferred complete set of sum-over-histories variables. This real history is described by embedding it in an ensemble of comparable imagined fine-grained histories, not unlike the familiar ensemble of statistical mechanics. These histories are assigned extended probabilities, which can sometimes be negative or greater than one. As we will show, this construction implies that the real history is not completely accessible to experimental or other observational discovery. However, sufficiently and appropriately coarse-grained sets of alternative histories have standard probabilities providing information about the real fine-grained history that can be compared with observation. We recover the probabilities of decoherent histories quantum mechanics for sets of histories that are recorded and therefore decohere. Quantum mechanics can be viewed as a classical stochastic theory of histories with extended probabilities and a well-defined notion of reality common to all decoherent sets of alternative coarse-grained histories.Comment: 11 pages, one figure, expanded discussion and acknowledgment

    Geoids in General Relativity: Geoid Quasilocal Frames

    Full text link
    We develop, in the context of general relativity, the notion of a geoid -- a surface of constant "gravitational potential". In particular, we show how this idea naturally emerges as a specific choice of a previously proposed, more general and operationally useful construction called a quasilocal frame -- that is, a choice of a two-parameter family of timelike worldlines comprising the worldtube boundary of the history of a finite spatial volume. We study the geometric properties of these geoid quasilocal frames, and construct solutions for them in some simple spacetimes. We then compare these results -- focusing on the computationally tractable scenario of a non-rotating body with a quadrupole perturbation -- against their counterparts in Newtonian gravity (the setting for current applications of the geoid), and we compute general-relativistic corrections to some measurable geometric quantities.Comment: 24 pages, 8 figures; v2: reference added; v3: introduction clarified, reference adde
    • …
    corecore