2,370 research outputs found
Sporadic Medullary Microcarcinoma in a Young Patient - A Rare Case
Sporadic medullary microcarcinoma of thyroid is a rare disease detected usually in 0.15% of all thyroid malignancy. We report a case of sporadic medullary microcarcinoma (MMC) of thyroid in a 24 year old male presenting as solitary thyroid nodule. There was no family history of medullary carcinoma of thyroid. Although medullary carcinoma in a familial setting have been reported, sporadic MMC is rare especially in a young patient
Using segmented objects in ostensive video shot retrieval
This paper presents a system for video shot retrieval in which shots are retrieved based on matching video objects using a combination of colour, shape and texture. Rather than matching on individual objects, our system supports sets of query objects which in total reflect the user’s object-based information need. Our work also adapts to a shifting user information need by initiating the partitioning of a user’s search into two or more distinct search threads, which can be followed by the user in sequence. This is an automatic process which maps neatly to the ostensive model for information retrieval in that it allows a user to place a virtual checkpoint on their search, explore one thread or aspect of their information need and then return to that checkpoint to then explore an alternative thread. Our system is fully functional and operational and in this paper we illustrate several design decisions we have made in building it
Load Balancing via Random Local Search in Closed and Open systems
In this paper, we analyze the performance of random load resampling and
migration strategies in parallel server systems. Clients initially attach to an
arbitrary server, but may switch server independently at random instants of
time in an attempt to improve their service rate. This approach to load
balancing contrasts with traditional approaches where clients make smart server
selections upon arrival (e.g., Join-the-Shortest-Queue policy and variants
thereof). Load resampling is particularly relevant in scenarios where clients
cannot predict the load of a server before being actually attached to it. An
important example is in wireless spectrum sharing where clients try to share a
set of frequency bands in a distributed manner.Comment: Accepted to Sigmetrics 201
Weakly Supervised Localization using Deep Feature Maps
Object localization is an important computer vision problem with a variety of
applications. The lack of large scale object-level annotations and the relative
abundance of image-level labels makes a compelling case for weak supervision in
the object localization task. Deep Convolutional Neural Networks are a class of
state-of-the-art methods for the related problem of object recognition. In this
paper, we describe a novel object localization algorithm which uses
classification networks trained on only image labels. This weakly supervised
method leverages local spatial and semantic patterns captured in the
convolutional layers of classification networks. We propose an efficient beam
search based approach to detect and localize multiple objects in images. The
proposed method significantly outperforms the state-of-the-art in standard
object localization data-sets with a 8 point increase in mAP scores
Search Tracker: Human-derived object tracking in-the-wild through large-scale search and retrieval
Humans use context and scene knowledge to easily localize moving objects in
conditions of complex illumination changes, scene clutter and occlusions. In
this paper, we present a method to leverage human knowledge in the form of
annotated video libraries in a novel search and retrieval based setting to
track objects in unseen video sequences. For every video sequence, a document
that represents motion information is generated. Documents of the unseen video
are queried against the library at multiple scales to find videos with similar
motion characteristics. This provides us with coarse localization of objects in
the unseen video. We further adapt these retrieved object locations to the new
video using an efficient warping scheme. The proposed method is validated on
in-the-wild video surveillance datasets where we outperform state-of-the-art
appearance-based trackers. We also introduce a new challenging dataset with
complex object appearance changes.Comment: Under review with the IEEE Transactions on Circuits and Systems for
Video Technolog
- …