2,370 research outputs found

    Sporadic Medullary Microcarcinoma in a Young Patient - A Rare Case

    Get PDF
    Sporadic medullary microcarcinoma of thyroid is a rare disease detected usually in 0.15% of all thyroid malignancy. We report a case of sporadic medullary microcarcinoma (MMC) of thyroid in a 24 year old male presenting as solitary thyroid nodule. There was no family history of medullary carcinoma of thyroid. Although medullary carcinoma in a familial setting have been reported, sporadic MMC is rare especially in a young patient

    Using segmented objects in ostensive video shot retrieval

    Get PDF
    This paper presents a system for video shot retrieval in which shots are retrieved based on matching video objects using a combination of colour, shape and texture. Rather than matching on individual objects, our system supports sets of query objects which in total reflect the user’s object-based information need. Our work also adapts to a shifting user information need by initiating the partitioning of a user’s search into two or more distinct search threads, which can be followed by the user in sequence. This is an automatic process which maps neatly to the ostensive model for information retrieval in that it allows a user to place a virtual checkpoint on their search, explore one thread or aspect of their information need and then return to that checkpoint to then explore an alternative thread. Our system is fully functional and operational and in this paper we illustrate several design decisions we have made in building it

    Load Balancing via Random Local Search in Closed and Open systems

    Full text link
    In this paper, we analyze the performance of random load resampling and migration strategies in parallel server systems. Clients initially attach to an arbitrary server, but may switch server independently at random instants of time in an attempt to improve their service rate. This approach to load balancing contrasts with traditional approaches where clients make smart server selections upon arrival (e.g., Join-the-Shortest-Queue policy and variants thereof). Load resampling is particularly relevant in scenarios where clients cannot predict the load of a server before being actually attached to it. An important example is in wireless spectrum sharing where clients try to share a set of frequency bands in a distributed manner.Comment: Accepted to Sigmetrics 201

    Weakly Supervised Localization using Deep Feature Maps

    Full text link
    Object localization is an important computer vision problem with a variety of applications. The lack of large scale object-level annotations and the relative abundance of image-level labels makes a compelling case for weak supervision in the object localization task. Deep Convolutional Neural Networks are a class of state-of-the-art methods for the related problem of object recognition. In this paper, we describe a novel object localization algorithm which uses classification networks trained on only image labels. This weakly supervised method leverages local spatial and semantic patterns captured in the convolutional layers of classification networks. We propose an efficient beam search based approach to detect and localize multiple objects in images. The proposed method significantly outperforms the state-of-the-art in standard object localization data-sets with a 8 point increase in mAP scores

    Search Tracker: Human-derived object tracking in-the-wild through large-scale search and retrieval

    Full text link
    Humans use context and scene knowledge to easily localize moving objects in conditions of complex illumination changes, scene clutter and occlusions. In this paper, we present a method to leverage human knowledge in the form of annotated video libraries in a novel search and retrieval based setting to track objects in unseen video sequences. For every video sequence, a document that represents motion information is generated. Documents of the unseen video are queried against the library at multiple scales to find videos with similar motion characteristics. This provides us with coarse localization of objects in the unseen video. We further adapt these retrieved object locations to the new video using an efficient warping scheme. The proposed method is validated on in-the-wild video surveillance datasets where we outperform state-of-the-art appearance-based trackers. We also introduce a new challenging dataset with complex object appearance changes.Comment: Under review with the IEEE Transactions on Circuits and Systems for Video Technolog
    corecore