12 research outputs found
Recommended from our members
Comparison of Single-Shot Echo-Planar and Line Scan Protocols for Diffusion Tensor Imaging
Rationale and Objectives: Both single-shot diffusion-weighted echo-planar imaging (EPI) and line scan diffusion imaging (LSDI) can be used to obtain magnetic resonance diffusion tensor data and to calculate directionally invariant diffusion anisotropy indices, ie, indirect measures of the organization and coherence of white matter fibers in the brain. To date, there has been no comparison of EPI and LSDI. Because EPI is the most commonly used technique for acquiring diffusion tensor data, it is important to understand the limitations and advantages of LSDI relative to EPI. Materials and Methods: Five healthy volunteers underwent EPI and LSDI diffusion on a 1.5 Tesla magnet (General Electric Medical Systems, Milwaukee, WI). Four-mm thick coronal sections, covering the entire brain, were obtained. In addition, one subject was tested with both sequences over four sessions. For each image voxel, eigenvectors and eigenvalues of the diffusion tensor were calculated, and fractional anisotropy (FA) was derived. Several regions of interest were delineated, and for each, mean FA and estimated mean standard deviation were calculated and compared. Results: Results showed no significant differences between EPI and LSDI for mean FA for the five subjects. When inter-session reproducibility for one subject was evaluated, there was a significant difference between EPI and LSDI in FA for the corpus callosum and the right uncinate fasciculus. Moreover, errors associated with each FA measure were larger for EPI than for LSDI. Conclusion: Results indicate that both EPI- and LSDI-derived FA measures are sufficiently robust. However, when higher accuracy is needed, LSDI provides smaller error and smaller inter-subject and inter-session variability than EPI
The DTI Challenge: Toward Standardized Evaluation of Diffusion Tensor Imaging Tractography for Neurosurgery: The DTI Challenge on Tractography for Neurosurgery
Diffusion tensor imaging tractography reconstruction of white matter pathways can help guide brain tumor resection. However, DTI tracts are complex mathematical objects and the validity of tractography-derived information in clinical settings has yet to be fully established. To address this issue, we initiated the DTI Challenge, an international working group of clinicians and scientists whose goal was to provide standardized evaluation of tractography methods for neurosurgery. The purpose of this empirical study was to evaluate different tractography techniques in the first DTI Challenge workshop
Efficient Construction Of Histology Slide Mosaics Via Phase
During development of new and experimental imaging techniques, one must compare with other well established methods to qualify the validity of the new methods. The use of diffusion tensor magnetic resonance imaging for the visualization of collateral nerve fibers in the spinal cord was recently proposed. To validate this new imaging method, the MR results need to be compared with histology tissue samples in which the nerve fibers are clarified through staining
Recommended from our members
High-Resolution Line Scan Diffusion Tensor MR Imaging of White Matter Fiber Tract Anatomy
Background and Purpose: MR diffusion tensor imaging permits detailed visualization of white matter fiber tracts. This technique, unlike T2-weighted imaging, also provides information about fiber direction. We present findings of normal white matter fiber tract anatomy at high resolution obtained by using line scan diffusion tensor imaging. Methods: Diffusion tensor images in axial, coronal, and sagittal sections covering the entire brain volume were obtained with line scan diffusion imaging in six healthy volunteers. Images were acquired for b factors 5 and 1000 s/mm2 at an imaging resolution of 1.7 Ă— 1.7 Ă— 4 mm. For selected regions, images were obtained at a reduced field of view with a spatial resolution of 0.9 Ă— 0.9 Ă— 3 mm. For each pixel, the direction of maximum diffusivity was computed and used to display the course of white matter fibers. Results: Fiber directions derived from diffusion tensor imaging were consistent with known white matter fiber anatomy. The principal fiber tracts were well observed in all cases. The tracts that were visualized included the following: the arcuate fasciculus; superior and inferior longitudinal fasciculus; uncinate fasciculus; cingulum; external and extreme capsule; internal capsule; corona radiata; auditory and optic radiation; anterior commissure; corpus callosum; pyramidal tract; gracile and cuneatus fasciculus; medial longitudinal fasciculus; rubrospinal, tectospinal, central tegmental, and dorsal trigeminothalamic tract; superior, inferior, and middle cerebellar peduncle; pallidonigral and strionigral fibers; and root fibers of the oculomotor and trigeminal nerve. Conclusion: We obtained a complete set of detailed white matter fiber anatomy maps of the normal brain by means of line scan diffusion tensor imaging at high resolution. Near large bone structures, line scan produces images with minimal susceptibility artifacts
Lung parenchymal signal intensity in MRI: A technical review with educational aspirations regarding reversible versus irreversible transverse relaxation effects in common pulse sequences
Lung parenchyma is challenging to image with proton MRI. The large air space results in ~l/5th as many signal-generating protons compared to other organs. Air/tissue magnetic susceptibility differences lead to strong magnetic field gradients throughout the lungs and to broad frequency distributions, much broader than within other organs. Such distributions have been the subject of experimental and theoretical analyses which may reveal aspects of lung microarchitecture useful for diagnosis. Their most immediate relevance to current imaging practice is to cause rapid signal decays, commonly discussed in terms of short T2* values of 1 ms or lower at typical imaging field strengths. Herein we provide a brief review of previous studies describing and interpreting proton lung spectra. We then link these broad frequency distributions to rapid signal decays, though not necessarily the exponential decays generally used to define T2* values. We examine how these decays influence observed signal intensities and spatial mapping features associated with the most prominent torso imaging sequences, including spoiled gradient and spin echo sequences. Effects of imperfect refocusing pulses on the multiple echo signal decays in single shot fast spin echo (SSFSE) sequences and effects of broad frequency distributions on balanced steady state free precession (bSSFP) sequence signal intensities are also provided. The theoretical analyses are based on the concept of explicitly separating the effects of reversible and irreversible transverse relaxation processes, thus providing a somewhat novel and more general framework from which to estimate lung signal intensity behavior in modern imaging practice
Recommended from our members
Diffusion Tensor Imaging and Its Application to Neuropsychiatric Disorders
Magnetic resonance diffusion tensor imaging (DTI) is a new technique that can be used to visualize and measure the diffusion of water in brain tissue; it is particularly useful for evaluating white matter abnormalities. In this paper, we review research studies that have applied DTI for the purpose of understanding neuropsychiatric disorders. We begin with a discussion of the principles involved in DTI, followed by a historical overview of magnetic resonance diffusion-weighted imaging and DTI and a brief description of several different methods of image acquisition and quantitative analysis. We then review the application of this technique to clinical populations. We include all studies published in English from January 1996 through March 2002 on this topic, located by searching PubMed and Medline on the key words “diffusion tensor imaging” and “MRI.” Finally, we consider potential future uses of DTI, including fiber tracking and surgical planning and follow-up