18 research outputs found
An analysis of the benefits of signal injection for low-speed sensorless control of induction motors
We analyze why low-speed sensorless control of the IM is intrinsically
difficult, and what is gained by signal injection. The explanation relies on
the control-theoretic concept of observability applied to a general model of
the saturated IM. We show that the IM is not observable when the stator speed
is zero in the absence of signal injection, but that observability is restored
thanks to signal injection and magnetic saturation. The analysis also reveals
that existing sensorless algorithms based on signal injection may perform
poorly for some IMs under particular operating conditions. The approach is
illustrated by simulations and experimental data
Signal injection and averaging for position estimation of Permanent-Magnet Synchronous Motors
Sensorless control of Permanent-Magnet Synchronous Motors at low velocity
remains a challenging task. A now well-established method consists in injecting
a high-frequency signal and use the rotor saliency, both geometric and
magnetic-saturation induced. This paper proposes a clear and original analysis
based on second-order averaging of how to recover the position information from
signal injection; this analysis blends well with a general model of magnetic
saturation. It also experimentally demonstrates the relevance for position
estimation of a simple parametric saturation model recently introduced by the
authors
Current Controller for Low Frequency Signal Injection and Rotor Flux Position Tracking at Low Speeds
International audienceRotor flux spatial position can be tracked in an ac machine even at low or zero stator frequency if a low-frequency harmonic current signal is injected into its stator. The harmonic current injection is source of the rotor speed perturbations which induce voltage oscillations in the stator winding at the injected frequency. By analyzing the stator winding voltage response, it is possible to detect the rotor flux position regardless of the stator frequency. This paper presents a stator current controller that is suitable for imposing rotating or pulsating harmonic current injection and a method for tracking the rotor flux position in either induction machines (IMs) or permanent-magnet synchronous machines (PMSMs). The controller contains, in addition to the standard fundamental-frequency-based synchronous reference frame (SRF) current controller, two sets of harmonic current integral controllers placed in respective harmonic SRFs. Such an extended current controller simultaneously performs two important tasks: controlled harmonic current injection with zero steady-state error and separation of particular spectral components in the stator voltage (spectral/sequence decomposition) which contain the rotor flux position information. The theoretical analysis presented, based on perturbation theory and averaging techniques, gives general expressions which link the rotor flux position error in IM and PMSM to the harmonic current controller outputs. Two special cases with the rotational and pulsating harmonic current injections are considered in more detail. The validity of the theoretical analysis and the feasibility of the sensorless rotor flux position detection are experimentally verified
Energy-based modeling of electric motors
We propose a new approach to model electrical machines based on energy
considerations and construction symmetries of the motor. We detail the approach
on the Permanent-Magnet Synchronous Motor and show that it can be extended to
Synchronous Reluctance Motor and Induction Motor. Thanks to this approach we
recover the usual models without any tedious computation. We also consider
effects due to non-sinusoidal windings or saturation and provide experimental
data
Adding virtual measurements by signal injection
We propose a method to "create" a new measurement output by exciting the
system with a high-frequency oscillation. This new "virtual" measurement may be
useful to facilitate the design of a suitable control law. The approach is
especially interesting when the observability from the actual output
degenerates at a steady-state regime of interest. The proposed method is based
on second-order averaging and is illustrated by simulations on a simple
third-order system
Problèmes d'identification et d'observabilité du moteur à induction pour la variation de vitesse industrielle "sans capteur"
Pour améliorer les performances d'un variateur de vitesse ou pour rendre autonome le contrôle des moteurs à induction sans capteur mécanique, il faut que le variateur de vitesse connaisse de manière précise les paramètres des moteurs qui lui sont accouplés. Nous proposons une phase d'identication à l'arrêt. Celle-ci soulève la problématique de la modélisation du moteur à induction et de l'étage de puissance (modèle de saturation, chutes de tension dans les composants de l'étage de puissance, ...) dans une zone de fonctionnement inhabituelle pour un variateur de vitesse. La connaissance des paramètres électriques hors ligne n'est pourtant pas susante. Lors du fonctionnement normal, la dérive thermique des résistances introduit une erreur paramétrique qui peut créer des problèmes de blocage dans le domaine de la basse vitesse ou au moins baisser notablement les performances. Nous avons analysé la zone de fonctionnement basse vitesse. Cette zone de fonctionnement contient des propriétés intrinsèques au moteur à induction : instabilité, inobservabilité (au premier ordre). Nous proposons la synthèse d'un observateur du moteur à induction fondée sur la linéarisation du système autour d'une trajectoire. Pour ce faire, nous avons développer une méthode de construction pour générer un observateur non singulier pour un système variant dans le temps possédant des singularités d'observabilité. Ce résultat provient de notre étude sur les systèmes possédant des singularités de commandabilité pour les systèmes linéaires à coecients variant dans le temps. Nous proposons explicitement un bouclage exogène permettant de transformer le système d'origine en des chaînes d'intégrateurs sans singularités
Initial rotor position detection in PMSM based on low frequency harmonic current injection
International audienceThis paper presents an approach for the initial rotor position detection in permanent magnet synchronous machine (PMSM) drives. It is based on injection of low frequency current and excitation of small rotor speed oscillations. In this way information about spatial position of the rotor flux can be retrieved from the stator voltage response regardless of the rotor (average) speed. The method presented is based on the standard synchronous reference frame proportional-integral (SRF PI) current controller augmented by a bank of harmonic integral (I) controllers. Such expanded current controller typically used in selective active filters provides simultaneously precise control of the harmonic current injection and spectral decomposition of the applied stator voltage. In the theoretical analyses presented relationships between the rotor flux position information and outputs of the harmonic I controllers are established. Based on this analysis a simple rotor position tracking and magnet flux polarity detection system is constructed. Experimental results presented demonstrate feasibility of this approach for initial rotor position detection in PMSM drives
Sensorless position estimation and control of permanent-magnet synchronous motors using a saturation model
International audienceSensorless control of permanent-magnet synchronous motors at low velocity remains a challenging task. A now well-established method consists of injecting a high-frequency signal and using the rotor saliency, both geometric and magnetic-saturation induced. This paper proposes a clear and original analysis based on second-order averaging of how to recover the position information from signal injection; this analysis blends well with a general model of magnetic saturation. It also proposes a simple parametric model of the saturated motor, based on an energy function which simply encompasses saturation and cross-saturation effects. Experimental results on a surface-mounted motor and an interior magnet motor illustrate the relevance of the approach
Modeling and identification of synchronous reluctance motors
International audienceThe goal of this paper is to propose a model of the (cross-)saturated SynRM suitable for sensorless control purposes, together with an identification procedure suitable for reasonably easy use in the field: the model contains about ten parameters, which are identified from only the drive current measurements, in experiments where the rotor is locked in a known position. The experimental procedure relies on signal injection to produce data that can be used for parameter identification
Obtaining the current-flux relations of the saturated PMSM by signal injection
International audienc