50 research outputs found
Molecular and serological evidence of flea-associated typhus group and spotted fever group rickettsial infections in Madagascar
This research was supported by the Wellcome Trust (RCDF and Senior Fellowship to ST, #081705 and #095171), the Institut Pasteur de Madagascar, and the Global Emerging Infections Surveillance and Response System, a Division of the Armed Forces Health Surveillance Center [847705.82000.25GB.A0074].Peer reviewedPublisher PD
High prevalence of <i>Rickettsia africae</i> variants in <i>Amblyomma variegatum</i> ticks from domestic mammals in rural western Kenya: implications for human health
Tick-borne spotted fever group (SFG) rickettsioses are emerging human diseases caused by obligate intracellular Gram-negative bacteria of the genus Rickettsia. Despite being important causes of systemic febrile illnesses in travelers returning from sub-Saharan Africa, little is known about the reservoir hosts of these pathogens. We conducted surveys for rickettsiae in domestic animals and ticks in a rural setting in western Kenya. Of the 100 serum specimens tested from each species of domestic ruminant 43% of goats, 23% of sheep, and 1% of cattle had immunoglobulin G (IgG) antibodies to the SFG rickettsiae. None of these sera were positive for IgG against typhus group rickettsiae. We detected Rickettsia africae–genotype DNA in 92.6% of adult Amblyomma variegatum ticks collected from domestic ruminants, but found no evidence of the pathogen in blood specimens from cattle, goats, or sheep. Sequencing of a subset of 21 rickettsia-positive ticks revealed R. africae variants in 95.2% (20/21) of ticks tested. Our findings show a high prevalence of R. africae variants in A. variegatum ticks in western Kenya, which may represent a low disease risk for humans. This may provide a possible explanation for the lack of African tick-bite fever cases among febrile patients in Kenya
Fermented Brewers’ Spent Grain Containing Dextran and Oligosaccharides as Ingredient for Composite Wheat Bread and Its Impact on Gut Metabolome In Vitro
Brewers’ spent grain or BSG is a fiber and protein rich food-grade side stream that has remained underutilized due to its poor technological and sensory characteristics. In this study, BSG was fermented with Weissella confusa A16 in presence of sucrose to induce the synthesis of dextran and maltosyl-isomaltooligosaccharides. Fermented BSG with or without the above polysaccharides was used as ingredient in wheat bread. Digestion of BSG breads was simulated in vitro with Simulator of Human Intestinal Microbial Ecosystem, and levels of fecal metabolites were analyzed. Enrichment of BSG breads with in situ dextran and maltosyl-isomaltooligosaccharides improved the baking quality compared to native BSG. Metabolism of free amino acids and synthesis of short chain fatty acids varied at different stages and parts of colon. The increase in butyric acid was similar in both the proximal and distal colon. In situ dextran and maltosyl-isomaltooligosaccharides, and higher content of proteins and fiber in BSG breads had a positive influence towards gut microbiota functionality. Along with several essential amino acids, an increase in amount of γ-aminobutyric acid was also observed after simulated digestion. BSG breads had a significant effect on the gut metabolome during in vitro digestion, showing increased production of microbial metabolites with potential health benefits
Molecular detection of zoonotic rickettsiae and Anaplasma spp. in domestic dogs and their ectoparasites in Bushbuckridge, South Africa
Members of the order Rickettsiales are small, obligate intracellular bacteria that are vector-borne and can cause mild to fatal diseases in humans worldwide. There is little information on the zoonotic rickettsial pathogens that may be harbored by dogs from rural localities in South Africa. To characterize rickettsial pathogens infecting dogs, we screened 141 blood samples, 103 ticks, and 43 fleas collected from domestic dogs in Bushbuckridge Municipality, Mpumalanga Province of South Africa, between October 2011 and May 2012 using the reverse line blot (RLB) and Rickettsia genus and species-specific quantitative real-time PCR (qPCR) assays. Results from RLB showed that 49% of blood samples and 30% of tick pools were positive for the genus-specific probes for Ehrlichia/Anaplasma; 16% of the blood samples were positive for Ehrlichia canis. Hemoparasite DNA could not be detected in 36% of blood samples and 30% of tick pools screened. Seven (70%) tick pools and both flea pools were positive for Rickettsia spp; three (30%) tick pools were positive for Rickettsia africae; and both flea pools (100%) were positive for Rickettsia felis. Sequencing confirmed infection with R. africae and Candidatus Rickettsia asemboensis; an R. felis-like organism from one of the R. felis-positive flea pools. Anaplasma sp. South Africa dog strain (closely related to Anaplasma phagocytophilum), A. phagocytophilum, and an Orientia tsutsugamushi-like sequence were identified from blood samples. The detection of emerging zoonotic agents from domestic dogs and their ectoparasites in a rural community in South Africa highlights the potential risk of human infection that may occur with these pathogens.The HDSS-Dogs platform (protocol no. VO33-11) was supported by funding to Darryn Knobel from the Morris Animal Foundation,
United States (grant no.D12CA-312). Drs. A.N. Maina and A.L. Richards were supported by funding of the Global Emerging Infections Surveillance and Response System, work unit # A1402.http://online.liebertpub.com/VBZ2017-04-30hb2016Veterinary Tropical Disease
High Prevalence of Rickettsia africae Variants in Amblyomma variegatum Ticks from Domestic Mammals in Rural Western Kenya: Implications for Human Health
Tick-borne spotted fever group (SFG) rickettsioses are emerging human diseases caused by obligate intracellular Gram-negative bacteria of the genus Rickettsia. Despite being important causes of systemic febrile illnesses in travelers returning from sub-Saharan Africa, little is known about the reservoir hosts of these pathogens. We conducted surveys for rickettsiae in domestic animals and ticks in a rural setting in western Kenya. Of the 100 serum specimens tested from each species of domestic ruminant 43% of goats, 23% of sheep, and 1% of cattle had immunoglobulin G (IgG) antibodies to the SFG rickettsiae. None of these sera were positive for IgG against typhus group rickettsiae. We detected Rickettsia africae–genotype DNA in 92.6% of adult Amblyomma variegatum ticks collected from domestic ruminants, but found no evidence of the pathogen in blood specimens from cattle, goats, or sheep. Sequencing of a subset of 21 rickettsia-positive ticks revealed R. africae variants in 95.2% (20/21) of ticks tested. Our findings show a high prevalence of R. africae variants in A. variegatum ticks in western Kenya, which may represent a low disease risk for humans. This may provide a possible explanation for the lack of African tick-bite fever cases among febrile patients in Kenya
Hypothermia amongst neonatal admissions in Kenya: a retrospective cohort study assessing prevalence, trends, associated factors, and its relationship with all-cause neonatal mortality
BackgroundReports on hypothermia from high-burden countries like Kenya amongst sick newborns often include few centers or relatively small sample sizes.ObjectivesThis study endeavored to describe: (i) the burden of hypothermia on admission across 21 newborn units in Kenya, (ii) any trend in prevalence of hypothermia over time, (iii) factors associated with hypothermia at admission, and (iv) hypothermia's association with inpatient neonatal mortality.MethodsA retrospective cohort study was conducted from January 2020 to March 2023, focusing on small and sick newborns admitted in 21 NBUs. The primary and secondary outcome measures were the prevalence of hypothermia at admission and mortality during the index admission, respectively. An ordinal logistic regression model was used to estimate the relationship between selected factors and the outcomes cold stress (36.0°C–36.4°C) and hypothermia (<36.0°C). Factors associated with neonatal mortality, including hypothermia defined as body temperature below 36.0°C, were also explored using logistic regression.ResultsA total of 58,804 newborns from newborn units in 21 study hospitals were included in the analysis. Out of these, 47,999 (82%) had their admission temperature recorded and 8,391 (17.5%) had hypothermia. Hypothermia prevalence decreased over the study period while admission temperature documentation increased. Significant associations were found between low birthweight and very low (0–3) APGAR scores with hypothermia at admission. Odds of hypothermia reduced as ambient temperature and month of participation in the Clinical Information Network (a collaborative learning health platform for healthcare improvement) increased. Hypothermia at admission was associated with 35% (OR 1.35, 95% CI 1.22, 1.50) increase in odds of neonatal inpatient death.ConclusionsA substantial proportion of newborns are admitted with hypothermia, indicating a breakdown in warm chain protocols after birth and intra-hospital transport that increases odds of mortality. Urgent implementation of rigorous warm chain protocols, particularly for low-birth-weight babies, is crucial to protect these vulnerable newborns from the detrimental effects of hypothermia
Molecular and serological evidence of flea-associated typhus group and spotted fever group rickettsial infections in Madagascar
International audienceBackground: Rickettsiae are obligate intracellular bacteria responsible for many febrile syndromes around the world,including in sub-Saharan Africa. Vectors of these pathogens include ticks, lice, mites and fleas. In order to assessexposure to flea-associated Rickettsia species in Madagascar, human and small mammal samples from an urbanand a rural area, and their associated fleas were tested.Results: Anti-typhus group (TGR)- and anti-spotted fever group rickettsiae (SFGR)-specific IgG were detected in24 (39%) and 21 (34%) of 62 human serum samples, respectively, using indirect ELISAs, with six individuals seropositivefor both. Only two (2%) Rattus rattus out of 86 small mammals presented antibodies against TGR. Out of 117fleas collected from small mammals, Rickettsia typhi, a TGR, was detected in 26 Xenopsylla cheopis (24%) collected fromrodents of an urban area (n = 107), while two of these urban X. cheopis (2%) were positive for Rickettsia felis, a SFGR. R.felis DNA was also detected in eight (31%) out of 26 Pulex irritans fleas.Conclusions: The general population in Madagascar are exposed to rickettsiae, and two flea-associated Rickettsiapathogens, R. typhi and R. felis, are present near or in homes. Although our results are from a single district, theydemonstrate that rickettsiae should be considered as potential agents of undifferentiated fever in Madagascar