9 research outputs found

    A Kinase Interacting Protein 1 regulates mitochondrial protein levels in energy metabolism and promotes mitochondrial turnover after exercise

    Get PDF
    A Kinase Interacting Protein 1 (AKIP1) is a signalling adaptor that promotes mitochondrial respiration and attenuates mitochondrial oxidative stress in cultured cardiomyocytes. We sought to determine whether AKIP1 influences mitochondrial function and the mitochondrial adaptation in response to exercise in vivo. We assessed mitochondrial respiratory capacity, as well as electron microscopy and mitochondrial targeted-proteomics in hearts from mice with cardiomyocyte-specific overexpression of AKIP1 (AKIP1-TG) and their wild type (WT) littermates. These parameters were also assessed after four weeks of voluntary wheel running. In contrast to our previous in vitro study, respiratory capacity measured as state 3 respiration on palmitoyl carnitine was significantly lower in AKIP1-TG compared to WT mice, whereas state 3 respiration on pyruvate remained unaltered. Similar findings were observed for maximal respiration, after addition of FCCP. Mitochondrial DNA damage and oxidative stress markers were not elevated in AKIP1-TG mice and gross mitochondrial morphology was similar. Mitochondrial targeted-proteomics did reveal reductions in mitochondrial proteins involved in energy metabolism. Exercise performance was comparable between genotypes, whereas exercise-induced cardiac hypertrophy was significantly increased in AKIP1-TG mice. After exercise, mitochondrial state 3 respiration on pyruvate substrates was significantly lower in AKIP1-TG compared with WT mice, while respiration on palmitoyl carnitine was not further decreased. This was associated with increased mitochondrial fission on electron microscopy, and the activation of pathways associated with mitochondrial fission and mitophagy. This study suggests that AKIP1 regulates the mitochondrial proteome involved in energy metabolism and promotes mitochondrial turnover after exercise. Future studies are required to unravel the mechanistic underpinnings and whether the mitochondrial changes are required for the AKIP1-induced physiological cardiac growth.</p

    Sex-specific aspects of phospholamban cardiomyopathy:The importance and prognostic value of low-voltage electrocardiograms

    Get PDF
    Background: A pathogenic variant in the gene encoding phospholamban (PLN), a protein that regulates calcium homeostasis of cardiomyocytes, causes PLN cardiomyopathy. It is characterized by a high arrhythmic burden and can progress to severe cardiomyopathy. Risk assessment guides implantable cardioverter-defibrillator therapy and benefits from personalization. Whether sex-specific differences in PLN cardiomyopathy exist is unknown. Objective: The purpose of this study was to improve the accuracy of PLN cardiomyopathy diagnosis and risk assessment by investigating sex-specific aspects. Methods: We analyzed a multicenter cohort of 933 patients (412 male, 521 female) with the PLN p.(Arg14del) pathogenic variant following up on a recently developed PLN risk model. Sex-specific differences in the incidence of risk model components were investigated: low-voltage electrocardiogram (ECG), premature ventricular contractions, negative T waves, and left ventricular ejection fraction. Results: Sustained ventricular arrhythmias (VAs) occurred in 77 males (18.7%) and 61 females (11.7%) (P =.004). Of the 933 cohort members, 287 (31%) had ≥1 low-voltage ECG during follow-up (180 females [63%], 107 males [37%]; P =.006). Female sex, age, age at clinical presentation, and proband status predicted low-voltage ECG during follow-up (area under the curve: 0.78). Sustained VA-free survival was lowest in males with low-voltage ECG (P <.001). Conclusion: Low-voltage ECGs predict sustained VA and are a component of the PLN risk model. Low-voltage ECGs are more common in females, yet prognostic value is greater in males. Future studies should determine the impact of this difference on the risk prediction of PLN cardiomyopathy and possibly other cardiomyopathies

    The erythropoietin receptor expressed in skeletal muscle is essential for mitochondrial biogenesis and physiological exercise

    Get PDF
    Erythropoietin (EPO) is a haematopoietic hormone that regulates erythropoiesis, but the EPO-receptor (EpoR) is also expressed in non-haematopoietic tissues. Stimulation of the EpoR in cardiac and skeletal muscle provides protection from various forms of pathological stress, but its relevance for normal muscle physiology remains unclear. We aimed to determine the contribution of the tissue-specific EpoR to exercise-induced remodelling of cardiac and skeletal muscle. Baseline phenotyping was performed on left ventricle and m. gastrocnemius of mice that only express the EpoR in haematopoietic tissues (EpoR-tKO). Subsequently, mice were caged in the presence or absence of a running wheel for 4 weeks and exercise performance, cardiac function and histological and molecular markers for physiological adaptation were assessed. While gross morphology of both muscles was normal in EpoR-tKO mice, mitochondrial content in skeletal muscle was decreased by 50%, associated with similar reductions in mitochondrial biogenesis, while mitophagy was unaltered. When subjected to exercise, EpoR-tKO mice ran slower and covered less distance than wild-type (WT) mice (5.5 ± 0.6 vs. 8.0 ± 0.4 km/day, p < 0.01). The impaired exercise performance was paralleled by reductions in myocyte growth and angiogenesis in both muscle types. Our findings indicate that the endogenous EPO-EpoR system controls mitochondrial biogenesis in skeletal muscle. The reductions in mitochondrial content were associated with reduced exercise capacity in response to voluntary exercise, supporting a critical role for the extra-haematopoietic EpoR in exercise performance. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00424-021-02577-4

    A randomized controlled trial of eplerenone in asymptomatic phospholamban p.Arg14del carriers

    Get PDF
    INTRODUCTION Phospholamban (PLN; p.Arg14del) cardiomyopathy is an inherited disease caused by the pathogenic p.Arg14del variant in the PLN gene. Clinically, it is characterized by malignant ventricular arrhythmias and progressive heart failure.1,2 Cardiac fibrotic tissue remodelling occurs early on in PLN p.Arg14del carriers.3,4 Eplerenone was deemed a treatment candidate because of its beneficial effects on ventricular remodelling and antifibrotic properties.5,6 We conducted the multicentre randomized trial ‘intervention in PHOspholamban RElated CArdiomyopathy STudy’ (i-PHORECAST) to assess whether treatment with eplerenone of asymptomatic PLN p.Arg14del carriers attenuates disease onset and progression

    A randomized controlled trial of eplerenone in asymptomatic phospholamban p.Arg14del carriers

    Get PDF
    Phospholamban (PLN; p.Arg14del) cardiomyopathy is an inherited disease caused by the pathogenic p.Arg14del variant in the PLN gene. Clinically, it is characterized by malignant ventricular arrhythmias and progressive heart failure.1,2 Cardiac fibrotic tissue remodelling occurs early on in PLN p.Arg14del carriers.3,4 Eplerenone was deemed a treatment candidate because of its beneficial effects on ventricular remodelling and antifibrotic properties.5,6 We conducted the multicentre randomized trial ‘intervention in PHOspholamban RElated CArdiomyopathy STudy’ (i-PHORECAST) to assess whether treatment with eplerenone of asymptomatic PLN p.Arg14del carriers attenuates disease onset and progression

    Relative fat mass and prediction of incident atrial fibrillation, heart failure and coronary artery disease in the general population

    No full text
    Background: Relative fat mass (RFM) is an emerging marker of obesity that estimates body fat percentage using a sex-specific formula containing height and waist circumference (WC). We studied the association of RFM with incident atrial fibrillation (AF), heart failure (HF), and coronary artery disease (CAD) and explored RFM cutoffs for cardiovascular disease (CVD) prediction. Methods: We studied 95,003 participants (age 45 ± 13 years, 59% women) without prevalent AF, HF or CAD from the population-based Lifelines study. Outcomes were ascertained using electrocardiography and self-reported questionnaire data. We used logistic regression to study the association of RFM with individual outcomes and a composite outcome (incident AF, HF, and/or CAD). Multivariable models were adjusted for components of the SCORE risk model (age, sex, systolic blood pressure, cholesterol, and smoking). Optimal cutoffs were determined using the Youden index. Results: During a median follow-up of 3.8 (3.0–4.6) years, 224 (0.2%) participants developed AF, 1003 (1.1%) HF and 657 (0.7%) CAD. After multivariable adjustment, RFM was significantly associated with all outcomes (standardised OR 1.26, 95% CI 1.18–1.34 for the composite outcome). Optimal RFM cutoffs (≥26 for men, ≥38 for women) were lower than previously proposed RFM cutoffs (≥30 for men, ≥40 for women). In general, overall discriminative ability of RFM and its cutoffs was at least similar (in women) or better (in men) compared to BMI and WC. Since RFM was substantially correlated with age, we additionally determined age-specific cutoffs, which ranged from 23 to 27 in men and 33 to 43 in women. Conclusions: RFM is associated with incident AF, HF, and CAD and may be used as a simple and intuitive marker of obesity and cardiovascular risk in the general population. This study provides potential RFM cutoffs for CVD prediction that may be used by future studies or preventive strategies targeting obesity and cardiovascular risk.</p

    Diffuse Myocardial Fibrosis on Cardiac Magnetic Resonance Imaging Is Related to Galectin-3 and Predicts Outcome in Heart Failure

    Get PDF
    AIMS: Ongoing adverse remodeling is a hallmark of heart failure (HF), which might be reflected by either focal or diffuse myocardial fibrosis. Therefore, in (pre)clinical settings, we used immunohistochemistry or cardiac magnetic resonance imaging (CMR) to investigate the association of (focal or diffuse) fibrosis with cardiac biomarkers and adverse events in HF. METHODS AND RESULTS: In C57Bl/6J mice, we determined the presence and extent of myocardial fibrosis 6 weeks post-myocardial infarction (MI). Furthermore, we studied 159 outpatient HF patients who underwent CMR, and determined focal and diffuse fibrosis by late gadolinium enhancement (LGE) and post-contrast T1 time of the non-LGE myocardium, respectively. HF patients were categorized based on the presence of LGE, and by the median post-contrast T1 time. Kaplan-Meier and Cox regression analyses were used to determine the association of fibrosis with HF hospitalization and all-cause mortality. LGE was detected in 61 (38%) patients. Cardiac biomarker levels were comparable between LGE-positive and LGE-negative patients. LGE-positive patients with a short T1 time had elevated levels of both NT-proBNP and galectin-3 (1611 vs. 453 ng/L, p = 0.026 and 20 vs. 15 μg/L, p = 0.004, respectively). This was not observed in LGE-negative patients. Furthermore, a short T1 time in LGE-positive patients was associated with a higher risk of adverse events (log-rank p = 0.01). CONCLUSION: This study implies that cardiac biomarkers reflect active remodeling of the non-infarcted myocardium of patients with focal myocardial scarring. Diffuse fibrosis, in contrast to focal scarring, might have a higher prognostic value regarding adverse outcomes in HF patients

    A Kinase Interacting Protein 1 regulates mitochondrial protein levels in energy metabolism and promotes mitochondrial turnover after exercise

    Get PDF
    Abstract A Kinase Interacting Protein 1 (AKIP1) is a signalling adaptor that promotes mitochondrial respiration and attenuates mitochondrial oxidative stress in cultured cardiomyocytes. We sought to determine whether AKIP1 influences mitochondrial function and the mitochondrial adaptation in response to exercise in vivo. We assessed mitochondrial respiratory capacity, as well as electron microscopy and mitochondrial targeted-proteomics in hearts from mice with cardiomyocyte-specific overexpression of AKIP1 (AKIP1-TG) and their wild type (WT) littermates. These parameters were also assessed after four weeks of voluntary wheel running. In contrast to our previous in vitro study, respiratory capacity measured as state 3 respiration on palmitoyl carnitine was significantly lower in AKIP1-TG compared to WT mice, whereas state 3 respiration on pyruvate remained unaltered. Similar findings were observed for maximal respiration, after addition of FCCP. Mitochondrial DNA damage and oxidative stress markers were not elevated in AKIP1-TG mice and gross mitochondrial morphology was similar. Mitochondrial targeted-proteomics did reveal reductions in mitochondrial proteins involved in energy metabolism. Exercise performance was comparable between genotypes, whereas exercise-induced cardiac hypertrophy was significantly increased in AKIP1-TG mice. After exercise, mitochondrial state 3 respiration on pyruvate substrates was significantly lower in AKIP1-TG compared with WT mice, while respiration on palmitoyl carnitine was not further decreased. This was associated with increased mitochondrial fission on electron microscopy, and the activation of pathways associated with mitochondrial fission and mitophagy. This study suggests that AKIP1 regulates the mitochondrial proteome involved in energy metabolism and promotes mitochondrial turnover after exercise. Future studies are required to unravel the mechanistic underpinnings and whether the mitochondrial changes are required for the AKIP1-induced physiological cardiac growth

    Sex-specific aspects of phospholamban cardiomyopathy: The importance and prognostic value of low-voltage electrocardiograms

    No full text
    Background: A pathogenic variant in the gene encoding phospholamban (PLN), a protein that regulates calcium homeostasis of cardiomyocytes, causes PLN cardiomyopathy. It is characterized by a high arrhythmic burden and can progress to severe cardiomyopathy. Risk assessment guides implantable cardioverter-defibrillator therapy and benefits from personalization. Whether sex-specific differences in PLN cardiomyopathy exist is unknown. Objective: The purpose of this study was to improve the accuracy of PLN cardiomyopathy diagnosis and risk assessment by investigating sex-specific aspects. Methods: We analyzed a multicenter cohort of 933 patients (412 male, 521 female) with the PLN p.(Arg14del) pathogenic variant following up on a recently developed PLN risk model. Sex-specific differences in the incidence of risk model components were investigated: low-voltage electrocardiogram (ECG), premature ventricular contractions, negative T waves, and left ventricular ejection fraction. Results: Sustained ventricular arrhythmias (VAs) occurred in 77 males (18.7%) and 61 females (11.7%) (P =.004). Of the 933 cohort members, 287 (31%) had ≥1 low-voltage ECG during follow-up (180 females [63%], 107 males [37%]; P =.006). Female sex, age, age at clinical presentation, and proband status predicted low-voltage ECG during follow-up (area under the curve: 0.78). Sustained VA-free survival was lowest in males with low-voltage ECG (P <.001). Conclusion: Low-voltage ECGs predict sustained VA and are a component of the PLN risk model. Low-voltage ECGs are more common in females, yet prognostic value is greater in males. Future studies should determine the impact of this difference on the risk prediction of PLN cardiomyopathy and possibly other cardiomyopathies
    corecore