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Abstract: Aims: Ongoing adverse remodeling is a hallmark of heart failure (HF), which might be
reflected by either focal or diffuse myocardial fibrosis. Therefore, in (pre)clinical settings, we used
immunohistochemistry or cardiac magnetic resonance imaging (CMR) to investigate the association
of (focal or diffuse) fibrosis with cardiac biomarkers and adverse events in HF. Methods and results: In
C57Bl/6J mice, we determined the presence and extent of myocardial fibrosis 6 weeks post-myocardial
infarction (MI). Furthermore, we studied 159 outpatient HF patients who underwent CMR, and
determined focal and diffuse fibrosis by late gadolinium enhancement (LGE) and post-contrast T1
time of the non-LGE myocardium, respectively. HF patients were categorized based on the presence
of LGE, and by the median post-contrast T1 time. Kaplan–Meier and Cox regression analyses were
used to determine the association of fibrosis with HF hospitalization and all-cause mortality. LGE
was detected in 61 (38%) patients. Cardiac biomarker levels were comparable between LGE-positive
and LGE-negative patients. LGE-positive patients with a short T1 time had elevated levels of both
NT-proBNP and galectin-3 (1611 vs. 453 ng/L, p = 0.026 and 20 vs. 15 µg/L, p = 0.004, respectively).
This was not observed in LGE-negative patients. Furthermore, a short T1 time in LGE-positive
patients was associated with a higher risk of adverse events (log-rank p = 0.01). Conclusion: This
study implies that cardiac biomarkers reflect active remodeling of the non-infarcted myocardium of
patients with focal myocardial scarring. Diffuse fibrosis, in contrast to focal scarring, might have a
higher prognostic value regarding adverse outcomes in HF patients.

Keywords: heart failure; cardiac magnetic resonance imaging; post-contrast T1 time; focal fibrosis;
diffuse fibrosis; galectin-3

1. Introduction

Following acute myocardial infarction (MI), a cascade of cardiac immune cell infil-
tration, cardiomyocyte necroptosis and formation of granulation tissue contributes to the
formation of a focal myocardial scar [1]. Although the presence and extent of myocardial
scarring have shown prognostic value [2–5], focal scarring is also considered essential
to maintain ventricle wall integrity. Interestingly, on the contra-lateral side, diffuse or
interstitial fibrosis plays an important role in the onset and progression of cardiovascular
disease, and mainly results in decreased cardiac function [6]. In fact, this type of fibrosis
might potentially be more interesting because it is, at least in part, reversible.

Cardiac magnetic resonance (CMR) imaging has evolved as the gold standard non-
invasive imaging technique for myocardial tissue characterization. Late gadolinium en-
hancement (LGE) and T1 mapping techniques allow the determination and quantification
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of focal myocardial scar formation and detailed tissue characterization including diffuse
fibrosis, respectively [7].

In this study, we determined the presence of myocardial fibrosis—either focal myocar-
dial scarring or diffuse fibrosis—and evaluated its relation with cardiac biomarkers and
outcomes. For this purpose, we used an MI murine model and a well-characterized cohort
of outpatient heart failure (HF) patients, either using immunohistochemistry methods or
CMR metrics (i.e., LGE and post-contrast T1 time), respectively.

2. Methods
2.1. Animal Studies
2.1.1. Mouse Model

MI was induced in mice with a C57Bl6/J background (The Jackson Laboratory, Bar
Harbor, ME) by permanent ligation of the left anterior descending coronary artery (LAD).
In sham-operated animals, the suture was placed under the artery and removed without
ligation. After a follow-up of 6 weeks, mice were sacrificed [8]. In total, analyses were
performed on 20 MI mice and 9 sham-operated mice.

2.1.2. Immunohistochemistry

Masson’s trichrome staining was performed to determine focal and diffuse myocardial
fibrosis in 4 µm paraffin-embedded cardiac tissue sections. Whole stained sections were
scanned with a high-throughput scanning system (Hamamatsu, Japan). Focal fibrosis
was described as dense and boundless fibrotic patterns replacing the original myocardial
tissue structure, as visually detected by an independent researcher. Diffuse fibrosis of the
non-infarcted myocardium was defined as interstitial fibrosis evenly distributed between
cardiomyocytes, with relatively well-organized myocardial bundles and intact cardiomy-
ocyte morphology or following anatomical structures. Diffuse fibrosis was determined
by analyzing all cardiac tissue without evident focal fibrosis. The amount of diffuse fibro-
sis was quantified as the percentage of positive cells compared to the total scanned area
(Aperio ImageScope v12.4.3.5008) and represented as fold change.

2.1.3. Quantitative Polymerase Chain Reaction

Total RNA was isolated from snap-frozen left ventricles (LV) using TRI reagent (Sigma-
Aldrich, St Louis, MO, USA). cDNA synthesis was performed using the QuantiTect Reverse
Transcription Kit (Qiagen, Germany). A real-time polymerase chain reaction (PCR) was
carried out using SYBR Green (Bio-Rad, Hercules, CA, USA) using the Bio-Rad CFX384
Real-Time PCR System with associated software (Bio-Rad, Hercules, CA, USA). Gene
expression was normalized with the mean of 36B4 mRNA content.

2.2. Human Studies
2.2.1. Patient Cohort

Consecutive outpatient HF patients who visited the outpatient clinic of the Univer-
sity Medical Center Groningen (UMCG), in Groningen, The Netherlands, between March
2014 and December 2017 were included in this study. Their data were published previ-
ously [9]. In total, 842 patients were included in this study cohort, of which 159 patients
(19%) underwent CMR with administration of gadolinium and were included in present
analyses. The primary endpoint was defined as a composite of HF hospitalization and
all-cause mortality, first to occur, after a median follow-up time of 2.6 [2.1–3.1] years. HF
hospitalization was defined as an unplanned overnight stay in the hospital due to acute
cardiac decompensation.

All patients were ≥18 years of age and were treated according to the European Society
of Cardiology (ESC) guidelines [10].
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2.2.2. CMR Protocol

CMR examinations were performed on a 1.5-T scanner (Siemens Aera, Erlangen,
Germany). ECG-gated cine true fast imaging with steady-state free precession (True FISP)
sequences with breath holding were performed in three long-axis slices and in contiguous
short-axis slices covering the entire LV. The following scan parameters were used: TE 1.1 ms,
TR 42 ms, flip angle 55◦; matrix 192 × 192, voxel size 1.82 × 1.82 × 8 mm; slice thickness
8 mm; and slice gap 2 mm. Using the short-axis slices, the endo and epicardial borders of
the LV were semi-automatically traced and manually adjusted by experienced laboratory
technicians using the available software (QMass 7.6, Medis, Leiden, The Netherlands). The
LV end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection
fraction (EF) and mass were calculated using the summation of slices multiplied by slice
thickness method.

2.2.3. LGE Analysis

Using identical slice location, LGE images were acquired 10 min after intravenous
administration of 0.2 mmol/kg gadolinium-based contrast agent (Dotarem, Gorinchem,
The Netherlands) with a single shot 2D phase sensitive inversion recovery sequence (TE
3.2 ms, TR 700 ms; flip angle 25◦; matrix 360 × 360 mm, voxel size 1.4 × 1.4 × 8 mm;
slice thickness 8 mm, slice gap 2 mm) to identify the location and extent of focal late
enhancement. The inversion time was individually set to null the signal of the normal
myocardium. The presence of focal LGE was visually determined by one observer (T.M.G.)
and reviewed by another observer (T.P.W.). LGE size was quantified with the full width
at half maximum technique using QMass 7.6 (Medis, Leiden, The Netherlands), and was
expressed as a percentage of the total LV mass. The LGE pattern was classified as ischemic
(e.g., subendocardial or transmural pattern) and non-ischemic (e.g., mid-wall, epicardial or
global pattern) based on previous recommendation [11].

2.2.4. T1 Measurements

Post-contrast T1 measurements were performed using an inversion recovery Look-
Locker sequence (True FISP), similar to the T1 scout sequence (TE 1.1 ms; TR 23 ms; flip
angle 30◦; matrix 380 × 380 mm, voxel size 1.98 × 1.98 × 8 mm). The Look-Locker sequence
was performed 10 min after the administration of 0.2 mmol/kg gadolinium in a short-axis
slice at mid-level over two RR intervals with varying inversion times. The endo- and
epicardial borders of the LV were manually traced and adjusted for each image by one
observer (T.M.G.) using QMass 7.6 (Medis, Leiden, The Netherlands). Special attention was
paid to exclude the blood volume. By drawing regions of interest (ROIs) within the endo-
and epicardial borders of the LV, and by excluding regions with focal LGE, the post-contrast
T1 time of the non-LGE myocardium was determined by fitting the signal intensity to an
analytical expression of the T1 inversion recovery [12]:

I = A − B exp(−t/T1*) (1)

T1 = T1*((B/A) − 1) (2)

In Equation (1), the signal intensity (I) is obtained from the average image intensity
inside the ROI. The time (t) is the effective inversion time associated with each image. A
and B are the scaling and offset constants, respectively. Together with the relaxation time
(T1*), they are obtained by nonlinear minimization (fitting) using the Levenberg–Marquardt
algorithm. T1 can be obtained from the T1* by performing a correction (Equation (2)) [12].

2.2.5. Biochemical Measurements

Galectin-3 levels were measured in EDTA plasma using a chemiluminescent micropar-
ticle immunoassay (CMIA) on an Abbott ARCHITECT automated immunoassay analyser
(Abbott Park, IL, USA). N-terminal B-type natriuretic peptide (NT-proBNP) was measured
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in Lithium Heparin plasma using a commercially available electrochemiluminescent sand-
wich immunoassay analyzed on a Roche Modular platform (Roche, Mannheim, Germany).

2.3. Statistics

Data are presented as means (±SD) when normally distributed and as medians (in-
terquartile range [IQR]) when non-normally distributed. Categorical variables are pre-
sented as number (%). The differences between the two groups were analyzed with the
use of the Student’s t-test for normally distributed data, the Mann–Whitney U test for
non-normally distributed data and the Spearman’s chi square test for categorical variables.
Linear regression analysis was performed to determine the association between diffuse
fibrosis and outcome (i.e., LV ejection fraction, LVEF) in mice. Using Kaplan–Meier anal-
ysis and a log-rank test, we compared the incidence of the primary composite endpoint
of HF hospitalization and all-cause mortality based on the presence or absence of LGE.
Subsequently, LGE-positive patients were stratified based upon the median post-contrast
T1 time of the non-LGE myocardium. A total of 13 LGE-positive patients were excluded
prior to post-contrast T1 time analyses since T1 time measurements were not available.
Univariable Cox proportional hazard models were used to evaluate the association be-
tween T1 time with the primary endpoint of HF hospitalization and all-cause mortality (per
10 milliseconds decrease in T1 time). All reported p values are two-tailed. A p value < 0.05
suggested statistical significance. All statistical analyses were conducted using STATA
software version 16.0 (Stata Corp LP, College Station, TX, USA) and GraphPad Prism
version 9.4.1 (GraphPad Software Inc., La Jolla, CA, USA).

3. Results
3.1. Presence of Focal Myocardial Fibrosis after MI

Some 6 weeks after surgery, Masson’s trichrome staining revealed evident myocardial
scarring in the hearts of MI mice, as depicted in Figure 1A. Additionally, the hearts of
MI mice showed significantly increased mRNA expression levels of genes involved in
fibrosis, as depicted by a 5.0-, 5.0- and a 4.9-fold increased expression of galectin-3 (Lgals3,
p = 0.0002), collagen type I alpha I chain (Col1a1, p < 0.0001) and collagen type III alpha I
chain (Col3a1, p < 0.0001), respectively (Figure 1B). Additionally, increased cardiac immune
infiltration was seen, as reflected by a 6.3- and 1.6-fold higher expression of interleukin-6
(Il6, p = 0.0009) and a cluster of differentiation 68 (Cd68, p = 0.0009) (Figure 1B).

3.2. Presence of Diffuse Fibrosis of the Non-Infarcted Myocardium

To determine the presence and extent of diffuse myocardial fibrosis after a MI, the
amount of fibrosis was quantified in the non-infarcted area of the myocardium (Figure 1A).
At 6 weeks post-MI, MI mice showed significantly higher levels of diffuse fibrosis compared
to their sham-operated counterparts (Figure 1C, p < 0.0001).

To assess the relation of diffuse myocardial fibrosis with HF severity, we performed
linear regression analyses between diffuse fibrosis, as assessed by Masson’s trichrome
staining, and LVEF. Diffuse fibrosis was shown to be associated with LVEF (β = −0.69,
p < 0.0001; Figure 1D).

3.3. LGE Positive vs. LGE Negative and Cardiac Biomarkers

A total of 159 outpatient HF patients were studied (Table 1). The mean age of the
population was 59 ± 14 years, with 93 (58%) male patients. Some 126 (79%) patients had
New York Heart Association (NYHA) class ≥ II symptoms, with 86 (54%) patients having
a LVEF < 40%.

To study focal myocardial fibrosis and cardiac biomarkers, patients were categorized
based on the presence or absence of LGE. In total, 98 patients (62%) could be classified as
LGE negative and 61 patients (38%) as LGE positive. LGE-positive patients were more
often male (70% vs. 51%, p = 0.015) and showed a higher incidence of coronary artery
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disease at baseline (52% vs. 8% p < 0.001), but no differences in LVEF, cardiac biomarker
levels or the severity of HF symptoms—determined by NYHA class—could be observed.

3.4. Diffuse Fibrosis of the Non-Infarcted Myocardium and Cardiac Biomarkers

Subsequently, LGE-positive patients were stratified based upon diffuse fibrosis of the
non-LGE myocardium (above or below median post-contrast T1 time; the median T1 time
was 382 ms, n = 24 in both groups). For the patient selection flow chart, see Figure 2. In
both groups, the majority (n = 18, 75% in both) of patients showed a subendocardial or
transmural LGE pattern, reflecting myocardial ischemia. Patients with shorter post-contrast
T1 time showed higher levels of both NT-proBNP (1611 ng/L vs. 453 ng/L, p = 0.009) and
galectin-3 (20.3 µg/L vs. 14.5 µg/L, p = 0.011) (Figure 3, Table 2), without differences in
LVEF (33 [23–40] vs. 36 [30–45], p = 0.10) or cardiac dimensions (e.g., LVEDV and LVESV)
between both groups.
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Figure 1. (A) Representative images of Masson’s trichrome-stained cardiac tissue sections of C57Bl/6J
background mice 6 weeks post-MI, and their sham-operated counterparts. The image details represent
a healthy myocardium, focal fibrosis and diffuse fibrosis. (B) Cardiac gene expression of genes
involved in fibrosis and immune infiltration in sham-operated mice (n = 9) and mice 6 weeks
post-MI (n = 20), depicted as fold change compared to sham. (C) Percentage of diffuse fibrosis of
the non-infarcted myocardium in sham-operated mice (n = 9) and mice 6 weeks post-MI (n = 20),
quantified from Masson’s trichrome-stained images and depicted as fold change compared to sham.
(D) Association between diffuse fibrosis and cardiac function. *** p < 0.001, **** p < 0.0001. Cd68,
cluster of differentiation 68; Col1a1, collagen type I alpha I chain; Col3a1, collagen type III alpha I
chain; Il6, interleukin-6; Lgals3, galectin-3; MI, myocardial infarction.
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Table 1. Baseline characteristics of the total study cohort, divided by the presence of LGE.

Characteristics Total Cohort
n = 159

LGE Negative
n = 98

LGE Positive
n = 61 p-Value

Age (y), mean (SD) 59 (14) 58 (14) 60 (13) 0.40
Female sex, n (%) 66 (42) 48 (49) 18 (30) 0.015
SBP (mmHg), mean (SD) 120 (20) 122 (20) 116 (21) 0.075
DBP (mmHg), mean (SD) 73 (11) 74 (12) 71 (10) 0.081
BMI (kg/m2), mean (SD) 28 (5) 28 (6) 27 (4) 0.063
Heart failure history, n (%)
Coronary artery disease 40 (25) 8 (8) 32 (52) <0.001
Hypertension 64 (40) 40 (41) 24 (39) 0.85
Atrial fibrillation 42 (26) 29 (30) 13 (21) 0.25
NYHA class, n (%) 0.33
I 33 (21) 22 (22) 11 (18)
II 90 (57) 51 (52) 39 (64)
III 36 (22) 25 (26) 11 (18)
Medication, n (%)
β-blocker 145 (91) 88 (90) 57 (93) 0.43
ACEi/ARB 138 (87) 84 (86) 54 (89) 0.61
Diuretic 105 (66) 65 (66) 40 (66) 0.92
Aldosterone antagonist 73 (46) 37 (38) 36 (59) 0.009
Laboratory measurements
eGFR (mL/min/1.73 m2), mean (SD) 72 (30) 72 (31) 71 (29) 0.78
NT-proBNP (ng/L), median [IQR] 753 [235–2137] 606 [172–1929] 1082 [381–2530] 0.052
Galectin-3 (µg/L), median [IQR] 16.6 [13.1–24.1] 16.7 [12.8–22.9] 16.6 [13.5–27.5] 0.49
CRP (mg/L), median [IQR] 4.0 [1.6–7.1] 4.3 [1.7–7.4] 3.1 [1.3–6.2] 0.42
Sodium (mmol/L), mean (SD) 140 (3) 141 (3) 139 (3) 0.016
CMR parameters
LVEF (%), median [IQR] 38 [29–45] 37 [25–48] 35 [28–47] 0.77
Post-contrast T1 time (ms), median [IQR] 390 (62) 405 [372–436] 382 [347–426] 0.13
LVEDV (mL), mean (SD) 232 (77) 231 (76) 234 (80) 0.83
LVESV (mL), mean (SD) 152 (73) 150 (70) 156 (78) 0.59
LVSV (mL), mean (SD) 79 (28) 80 (29) 78 (26) 0.68

Abbreviations: ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin II receptor blocker; BMI, body
mass index; CMR, cardiac magnetic resonance; CRP, C-reactive protein; DBP, diastolic blood pressure; eGFR,
estimated glomerular filtration rate; LGE, late gadolinium enhancement; LVEDV, left ventricular end-diastolic
volume; LVEF, left ventricular ejection fraction; LVESV, left ventricular end-systolic volume; LVSV, left ventricular
stroke volume; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association; SBP,
systolic blood pressure.
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Table 2. Baseline characteristics of LGE-positive patients, divided by median post-contrast T1 time.

Characteristics T1 Time < 382 ms
n = 24

T1 Time > 382 ms
n = 24 p-Value

Age (y), mean (SD) 62 (12) 56 (14) 0.11
Female sex, n (%) 11 (46) 5 (21) 0.066
Heart failure history, n (%)
Coronary artery disease 11 (46) 10 (42) 0.77
Hypertension 9 (38) 8 (33) 0.76
Atrial fibrillation 5 (21) 4 (17) 0.71
NYHA class, n (%) 0.28
I 4 (17) 6 (25)
II 14 (58) 16 (67)
III 6 (25) 2 (8)
Medication, n (%)
β-blocker 22 (92) 22 (92) 1.00
ACEi/ARB 22 (92) 24 (100) 0.15
Diuretic 18 (75) 13 (54) 0.13
Aldosterone antagonist 15 (63) 14 (58) 0.77
Laboratory measurements
NT-proBNP (ng/L), median [IQR] 1611 [1066–4406] 453 [323–1557] 0.009
Galectin-3 (µg/L), median [IQR] 20.3 [16.3–32.2] 14.5 [12.6–20.0] 0.011
Creatinine (µmol/L), median [IQR] 100 [84–135] 89 [74–99] 0.18
eGFR (mL/min/1.73 m2), mean (SD) 61 [41–79] 84 [62–98] 0.008
CMR parameters
LVEF (%), median [IQR] 33 [22–36] 33 [23–45] 0.35
Post-contrast T1 time (ms), median [IQR] 347 [303–365] 426 [410–443] <0.001
LVEDV (mL/m2), median [IQR] 135 [100–149] 132 [103–159] 0.51
LVESV (mL/m2), median [IQR] 92 [66–113] 93 [62–115] 0.85
LV mass (g/m2), median [IQR] 53 [44–78] 59 [53–77] 0.18

Abbreviations: ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin II receptor blocker; CMR, cardiac
magnetic resonance; eGFR, estimated glomerular filtration rate; LVEDV, left ventricular end-diastolic volume;
LVEF, left ventricular ejection fraction; LVESV, left ventricular end-systolic volume; NT-proBNP, N-terminal
pro-B-type natriuretic peptide; NYHA, New York Heart Association.
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3.5. Presence of Focal Fibrosis as A Determinant of Outcome

During a median follow-up of 2.6 [2.1–3.1] years, 10 (16%) patients experienced
death and 10 (16%) were hospitalized for HF, compared to 12 (12%) and 11 (11%) of
the LGE-negative patients. In total, 15 (25%) LGE-positive patients experienced the primary
composite outcome compared to 20 (20%) of the LGE-negative patients. Using Kaplan–
Meier analysis, no difference in event-free survival was observed between LGE-positive
and LGE-negative patients (log-rank p = 0.69).

3.6. Presence of Diffuse Fibrosis of the Non-Infarcted Myocardium as A Determinant of Outcome

In LGE-positive patients, HF hospitalization and all-cause mortality were reached in
9 (43%) patients with a shorter post-contrast T1 time, compared to 3 (14%) patients with
a longer T1 time during follow-up. Those patients with a shorter post-contrast T1 time
had a worse prognosis regarding HF hospitalizations and all-cause mortality compared
to those with a longer T1 time (log-rank p = 0.01, Figure 4), mainly due to higher HF
hospitalization rates (log-rank p = 0.02) rather than death of any cause (log-rank p = 0.16).
In univariable Cox regression analyses, patients with a shorter T1 time showed a higher
risk of HF hospitalization and all-cause mortality (HR 1.09 [1.02–1.18] per 10 milliseconds
decrease in T1 time, p = 0.013). Due to a small number of events, no multivariable regression
analysis was performed.
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As a sensitivity analysis, post-contrast T1 time was also determined in LGE-negative
patients. LGE-negative patients were stratified according to the median of the post-contrast
T1 time (median T1 time 405 [372–436] ms). In LGE-negative patients, hospitalization for
HF and death occurred in 8 (18%) of the patients with a shorter post-contrast T1 time and
in 11 (25%) of the patients with a longer post-contrast T1 time. No association with cardiac
biomarker levels nor prognosis (log-rank p = 0.24) could be observed.

4. Discussion

Our results indicate that diffuse fibrosis (1) is evident in the non-infarcted area of the
myocardium, (2) is associated with biomarkers of cardiac stretch and remodeling, and
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(3) has higher prognostic value regarding adverse outcomes compared to focal fibrosis in
outpatient HF patients with evident myocardial scarring (Graphical abstract).

First, we show that diffuse fibrosis develops through the entire non-infarcted my-
ocardium, alongside evident focal scarring, as a response to tissue damage after MI in
mice. On the cardiac gene expression level, fibrosis is also evident, as depicted by a 5-fold
increase in expression of galectin-3. Regarding outcome, diffuse fibrosis shows a strong
association with cardiac function, as reflected by LVEF. Over the past decade, it is becoming
increasingly clear that myocardial fibrosis plays a major role in the pathophysiology of CV
disease [13]. Diffuse or interstitial fibrosis actively contributes to left ventricular dysfunc-
tion and is suggested to play a primary role in HF pathogenesis [14], which is consistent
with our animal experiments. To validate the role of fibrosis in humans, diffuse and focal
fibrosis were assessed using CMR. Plasma NT-proBNP and galectin-3 were significantly
higher in patients with a shorter post-contrast T1 time, independent of LVEF or cardiac
dimensions, in contrast to focal myocardial scarring. This indicates a clear association of
interstitial fibrosis with cardiac wall stress and remodeling, and underscores the potential
of galectin-3 as a marker of early cardiac remodeling, even before an evident HF phenotype
arises [15–17]. From experimental studies, it is known that galectin-3 levels are at their
top at peak fibrosis, but virtually absent after full recovery [18,19]. This might imply a
significant role for galectin-3 in the active process of diffuse fibrogenesis [20], rather than
focal scarring or replacement fibrosis.

LGE is known for its diagnostic accuracy in the assessment of focal scar formation and
has high prognostic value, especially concerning sudden cardiac death and (life-threatening)
ventricular arrhythmias [21,22]. However, in our study, no difference in outcome was
observed between patients with LGE presence or absence. In (stable) outpatient HF patients
with focal myocardial scarring, the critical period of scar formation may already have taken
place, and has apparently not resulted in mortality due to arrhythmogenic episodes. This
indicates the value of diffuse fibrosis in outcome assessment in outpatient HF patients.

In this study, diffuse myocardial fibrosis was assessed with a post-contrast T1 time
of the non-infarcted myocardium and predicted prognosis. While 14% of patients with
long T1 time were readmitted for HF or died of any cause, this concerned 43% of the
patients with a short T1 time. This is in line with several studies emphasizing the prog-
nostic importance of interstitial fibrosis in non-ischemic cardiomyopathy [23,24], and the
non-infarcted myocardium [20,25] in coronary artery disease. A study by Marques and
colleagues demonstrated that cardiac fibrogenesis even takes place and predicts prognosis
in healthy individuals from the Multi-Ethnic Study of Atherosclerosis (MESA) study [26].
A high native T1 time (pre-contrast, >984 ms) was associated with a 2.1-fold increased
relative risk of new-onset CV events, while high extracellular volume (ECV > 30%) showed
a 2.0 fold, 2.9 fold and 1.7 fold increased risk for new-onset CV events, new-onset HF and
all-cause mortality, respectively. This is in contrast to focal scarring by LGE, which did
not show associations with outcome. This suggests a prominent role for pre-symptomatic
diffuse fibrosis in early disease pathogenesis.

Previous human studies have shown the high accuracy of T1-based metrics (e.g., native
T1, post-contrast T1 and ECV) in discriminating healthy from fibrotic cardiac tissue, and
are associated with the presence and extent of diffuse fibrosis determined by cardiac biopsy
and after autopsy [7]. However, to date, there is no consensus on the CMR mapping
technique to be used. In some studies, investigators even developed a personalized T1
mapping approach to determine patient-specific focal and interstitial fibrosis [27].

Preclinical studies and clinical trials targeting cardiac fibrogenesis are emerging [28–30].
In the 1990s, The Randomized ALdactone Evaluation Study (RALES) confirmed the thera-
peutic protective effects of spironolactone in all-cause HF patients, which was most likely
attributed to a reduction in myocardial fibrosis [31]. Additionally, in recent years, several
studies have attempted to inhibit diffuse fibrosis, for instance, by targeting galectin-3 [29,30],
a protein known to be actively involved in cardiac inflammation and remodeling. In a
pre-clinical setting, galectin-3 inhibition results in a reduction in myocardial fibrosis and
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improvement of LV function [30]; however, to date, its favorable effects are difficult to
demonstrate in patients [29]. Recently, the phase 2 Pirfenidone in Patients with Heart Failure
and Preserved Left Ventricular Ejection Fraction (PIROUETTE) trial, showed the beneficial
effects of pirfenidone—an FDA-approved drug for idiopathic pulmonary fibrosis—on
CMR-assessed interstitial myocardial fibrosis [28].

Despite ample evidence on the beneficial effects of targeting diffuse fibrosis, trans-
lation to clinical practice has not been accomplished yet. The difficulty of determining
a robust study endpoint is probably one of the major reasons, since this usually entails
invasive processes (e.g., cardiac biopsy) or may not fully reflect cardiac remodeling (e.g., fi-
brotic biomarkers) [29]. Based on our study, in addition to already existing data [28], we
believe that diffuse fibrosis and CMR metrics have the potential to be used as primary
outcome parameters.

5. Conclusions

Together, our findings indicate that diffuse cardiac fibrosis plays an important role in
active remodeling of the non-infarcted myocardium of patients with focal myocardial scar-
ring. CMR-assessed diffuse fibrosis could provide an accessible and powerful noninvasive
tool to determine prognosis in outpatient HF patients, and could potentially be used to
determine the effectiveness of anti-fibrotic medication.

6. Limitations

A few limitations should be acknowledged. First, this study includes only a limited
number of outpatient HF patients, preventing us from multivariable-adjusted analyses; as a
result, conclusions should be drawn with some restraint. Second, the relationship of diffuse
fibrosis with cardiac biomarkers and the prognostic value of this relationship regarding
outcome were only observed in HF patients with focal myocardial scarring on CMR. In line
with this, the majority of LGE-positive patients showed an ischemic LGE pattern. However,
the LGE pattern of some patients was considered non-ischemic. The role of diffuse fibrosis
and its usefulness regarding prognosis might differ between different HF etiologies, for
instance, between ischemic and non-ischemic HF patients.

Because of the retrospective nature of this study, it was not possible to determine the
relation and prognostic value of other (cardiac) biomarkers, for instance soluble ST2 and
growth differentiation factor-15 (GDF-15), both known to be involved in inflammation
and fibrosis.

Additionally, T1-based indices may be affected by other pathological processes
(e.g., edema), and are highly dependent on CMR equipment and the time between con-
trast agent administration and measurements. Therefore, it is difficult to directly compare
(post-contrast) T1 times between different studies and hospitals. Additionally, in this study,
only post-contrast T1 time was determined, while ECV is increasingly being used to differ-
entiate cardiomyopathy etiology. It would have been interesting to compare prognostic
performance of different CMR metrics.

When using CMR as a robust study endpoint for diffuse fibrosis, it is worth considering
the cost-effectiveness of CMR, especially in healthy subjects. Since the average price of
CMR is EUR 160 to 1400 per scan [32], the costs may not outweigh the benefits in a relatively
healthy population.
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